

MOTIVATION

Problem : Given a set of influential earlier users, can we p many people will follow them in the future?

How many people will be influenced in the future ?

- ► Challenges
- Latent social network structures
- Unknown diffusion mechanism
- Observing only temporal traces of information diffusion

PREVIOUS TWO-STAGE SOLUTIONS

- Algorithm
- Learn one of the following diffusion models
- Discrete-Time independent cascade Model (DIC)
- Linear Threshold Model (LT)
- Continuous-Time independent cascade Model (CIC)
- Calculate the influence from the chosen model
- Weakness
- The diffusion model may be misspecified.
- Need to learn both hidden networks and model parameter
- Influence calculation is challenging.

Can we avoid diffusion model learning & influence con

INFLUENCE FUNCTION

- ▶ Definition : $\sigma(S) : 2^{\mathcal{V}} \mapsto \mathbb{R}_+$ of a set of nodes $S \subseteq \mathcal{V}, |\mathcal{V}| = 1$ • $\sigma(S)$ is the expected number of infected nodes by set S. • $\sigma(S)$ is common to many diffusion models.
- Property : $\sigma(S)$ is a **coverage function** for DIC, LT and CI
- $\bullet \sigma(\mathcal{S}) = \sum_{u \in \bigcup_{s \in \mathcal{S}} \mathcal{A}_s} a_u$
- a ground set \mathcal{U} with weight $a_u \geqslant 0, \ u \in \mathcal{U}$
- ▶ a collection of subsets $\{\mathcal{A}_s : \mathcal{A}_s \subseteq \mathcal{U}\}$ associated with each $s \in \mathcal{V}$

RANDOM REACHABILITY FUNCTION

- View the diffusion process as a node reachability problem graph g sampled from a joint distribution induced by a diffu Represent each sample g as a binary reachability matrix
- 1, *j* is reachable from source *s*, $oldsymbol{R}_{sj} =$

otherwise. 0,

- ▶ Denote each set S as a binary vector $\chi_S \in \{0, 1\}^d$, $\chi_S(s)$
- ▶ Determine the reachability of node *j* from S by whether χ_{S}^{\top}
- ► Transform $\chi_{\mathcal{S}}^{\top} \mathbf{R}_{:i}$ into a binary function $\phi(\chi_{\mathcal{S}}^{\top} \mathbf{R}_{:i})$: $2^{\mathcal{V}} \mapsto \{$ $\phi(u) = \min \{u, 1\} : \mathbb{Z}_+ \mapsto \{0, 1\}$ is a concave function
- Derive the influence of S in \mathscr{G} as

$$\#(\mathcal{S}|\boldsymbol{R}) := \sum_{j=1}^{d} \phi\left(\chi_{\mathcal{S}}^{\top} \boldsymbol{R}_{:j}\right)$$

INFLUENCE FUNCTION LEARNING IN INFORMATION DIFFUSION NETWORKS

MARIA-FLORINA BALCAN LE SONG NAN DU YINGYU LIANG GEORGIA INSTITUTE OF TECHNOLOGY

	EXPECTATION OF RANDOM RECHABILIT
predict how	Overall influence function
	$\mathbb{E}_{\boldsymbol{R} \sim \boldsymbol{p}_{\boldsymbol{R}}}[\#(\mathcal{S} \boldsymbol{R})] = \sum_{j=1}^{d} \mathbb{E}_{\boldsymbol{R} \sim \boldsymbol{p}_{\boldsymbol{R}}}\left[\phi\left(\chi_{\mathcal{S}}^{\top} \boldsymbol{R}_{:j}\right)\right]$
	Simple Learning Strategy Learn each f _j (χ _S) separately in parallel and
	RANDOM BASIS FUNCTION APPROXIMAT
	• Denote $f_j(\chi_S) = \mathbb{E}_{r \sim p_j(r)} \left[\phi(\chi_S^\top r) \right]$ where $r := distribution of column j of \mathbf{R} induced by p_{\mathbf{R}}• Let C be the minimum value such that p_j(r)• Draw K random binary vectors \{r_1, r_2, \ldots, r_k\}f^w(\chi_S) = \sum_{k=1}^K w_k \phi(\chi_S^\top r_k) = w^\top \phi(\chi_S) \mathbf{S}$
	Lemma Let $p_{\chi}(\chi_{\mathcal{S}})$ be a distribution of $\chi_{\mathcal{S}}$. If $K = C$ drawn i.i.d. from $q_j(r)$, then with probability $f^w \in \widehat{\mathcal{F}}^w$ such that $\mathbb{E}_{\chi_{\mathcal{S}} \sim p_{\chi}}[(f_j(\chi_{\mathcal{S}}) - f^w(\chi_{\mathcal{S}}))^2]$
ers.	► Propose $q_j(r) = \prod_{s=1}^d q_j(r(s))$ where $q_j(r(s))$ of the <i>i</i> -th dimension of <i>r</i> estimated by $q_j(r)$ $\mathcal{D}_s^m := \{i : s \in S_i\}.$
nnutation?	EFFICIENT LEARNING ALGORITHM
d	 Truncate f^w to avoid zero probability f^{w,λ}(χ small threshold value. Draw <i>m i.i.d.</i> cascades D^m := {(S₁, I₁), and the respective set of influenced nodes I of w = I (i ∈ T) denote whether node i influenced nodes
IC model	Let $y_{ji} = \mathbb{I} \{ j \in \mathcal{I}_i \}$ denote whether hode j is Let $y_{ji} = \mathbb{I} \{ j \in \mathcal{I}_i \}$ denote whether hode j is Let $y_{ji} = \mathbb{I} \{ j \in \mathcal{I}_i \}$ denote whether hode j is Let $y_{ji} = \mathbb{I} \{ j \in \mathcal{I}_i \}$ denote whether hode j is Let $y_{ji} = \mathbb{I} \{ j \in \mathcal{I}_i \}$ denote whether hode j is Let $y_{ji} = \mathbb{I} \{ j \in \mathcal{I}_i \}$ denote whether hode j is m
	$\widehat{w} = \sum_{i=1}^{m} y_{ij} \log f^{w,\lambda}(\chi_{\mathcal{S}_i}) + (1 - subject to) \sum_{k=1}^{K} w_k = 1, w_k \ge 1$
	by using convex optimization techniques.
	OVERALL ALGORITHM INFLULEARNER
	Algorithm 1INFLULEARNERinputtraining data $\{(S_i, \mathcal{I}_i)\}_{i=1}^m, \lambda \in (0, \frac{1}{4})$ 1:for each node $j \in [d]$ do2:sample K random features $\{r_1, \ldots, r_K$
in a random usion model. with	3: compute $\phi(\chi_{S_i}) = (\phi(\chi_{S_i}^{+}r_1), \dots, \phi(\chi_{S_i}^{+}r_n))$ 4: Solve (1) using convex optimization; 5: $\widehat{f}_j^{w,\lambda}(\chi_S) = \lambda + (1 - 2\lambda)(w^T)^{\top}\phi(\chi_S)$; 6: end for output $\widehat{\sigma}(S) = \sum_{j=1}^d \widehat{f}_j^{w,\lambda}(\chi_S)$;
1 0	SAMPLE COMPLEXITY
= 1, <i>s</i> ∈ <i>S</i> [⊤] <i>R</i> _{:j} ≥ 1 0, 1}, where	Suppose we set $\lambda = \tilde{O}(\frac{\epsilon}{d})$, $K = \tilde{O}(\frac{C^2d^2}{\epsilon^2})$, an probability at least $1 - \delta$ over the drawing c
	output of Algorithm 1 satisfies $\mathbb{E}_{\mathcal{D}^m}\mathbb{E}_{p_{\chi}} \left[\left(\sum_{j=1}^{n} \mathbb{E}_{p_{\chi}} \right) \right]$ Intuitively, when the gap <i>C</i> between p_j and random features and more training data to
	TC

Y FUNCTIONS

$$= \sum_{j=1}^{d} \underbrace{\Pr\left\{\phi\left(\chi_{\mathcal{S}}^{\top} \boldsymbol{R}_{:j}\right) = 1 | \chi_{\mathcal{S}}\right\}}_{:=f_{j}(\chi_{\mathcal{S}})}$$

nd sum them together.

ION

- $= \mathbf{R}_{i}$, and $p_i(r)$ is the marginal $r) \leq Cq_j(r).$, r_{K} from q(r) such that
- subject to $\sum w_k = 1, w_k \ge 0$
- $O(\frac{C^2}{c^2}\log\frac{C}{c\delta})$ and r_1,\ldots,r_K are ty at least $1 - \delta$, there exists an $[2] \leq \epsilon^2$.
- s)) is the marginal distribution $(r(s)) = rac{1}{|\mathcal{D}_s^m|} \sum_{i \in \mathcal{D}_s^m} Y_{ij},$

$$\chi_{\mathcal{S}}) = (\mathsf{1} - \mathsf{2}\lambda) f^{w}(\chi_{\mathcal{S}}) + \lambda, \, \lambda ext{ is a}$$

- $(\mathcal{S}_m, \mathcal{I}_m)$ with source set \mathcal{S}_i $S \mathcal{I}_i$.
- is infected in cascade \mathcal{I}_i
- le log-likelihood for each node j

$$-y_{ij})\log(1-f^{w,\lambda}(\chi_{\mathcal{S}_i}))$$

(1)

} from $q_j(r)$; $(r_{K})), \forall i;$

nd $m = \tilde{O}\left(\frac{C^2 d^3}{c^3}\right)$. Then with of the random features, the $\sum_{j=1}^{d} \widehat{f}_{j}^{w,\lambda}(\chi_{\mathcal{S}}) - \sigma(\mathcal{S}) \Big)^{2}$ q_i is large, we need more learn the weights.

ICML 2014, BEIJING, CHINA

EXPERIMENTAL EVALUATION : COMPETITORS

- Continuous-time Independent Cascade model with exponential pairwise transmission function (CIC).
- Continuous-time Independent Cascade model with exponential pairwise transmission function and given network Structure (CIC-S).
- Discrete-time Independent Cascade model (DIC).
- Discrete-time Independent Cascade model with given network **S**tructure (DIC-S).
- Modified Logistic Regression
- Linear Regression

EXPERIMENTAL EVALUATION : SYNTHETIC DATA

Robustness to model mis-specifications

EXPERIMENTAL EVALUATION : REAL DATA

Georgialnstitute of Jechnology®