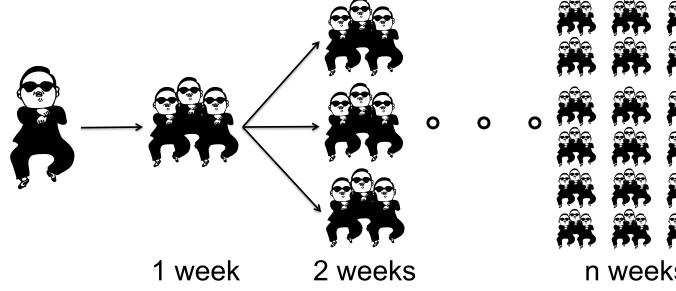
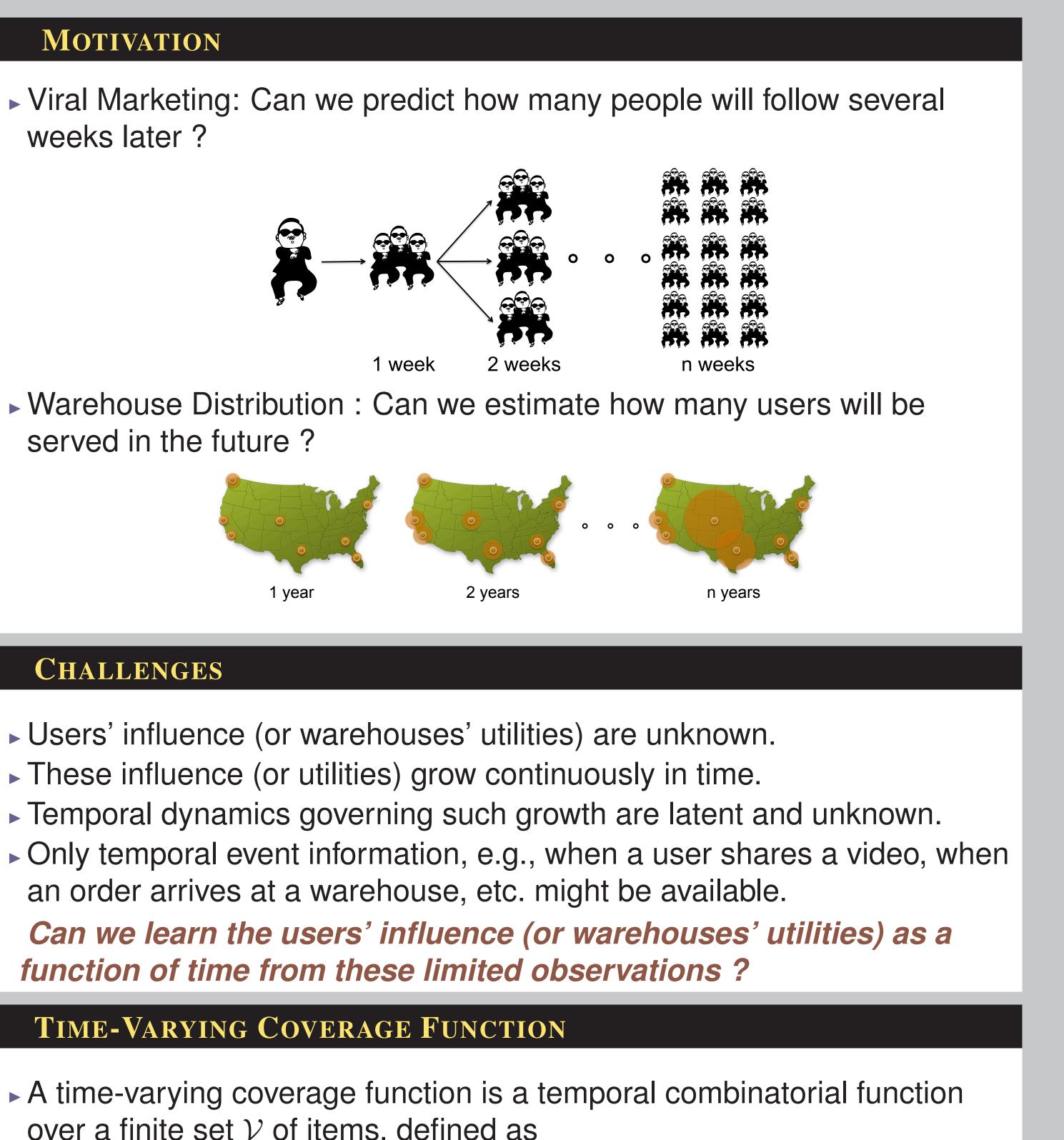
MOTIVATION

Viral Marketing: Can we predict how many people will follow several weeks later ?



Warehouse Distribution : Can we estimate how many users will be served in the future ?



CHALLENGES

- Users' influence (or warehouses' utilities) are unknown.
- These influence (or utilities) grow continuously in time.
- an order arrives at a warehouse, etc. might be available. Can we learn the users' influence (or warehouses' utilities) as a function of time from these limited observations ?

TIME-VARYING COVERAGE FUNCTION

A time-varying coverage function is a temporal combinatorial function over a finite set \mathcal{V} of items, defined as

$$f(\mathcal{S},t) = Z \cdot \mathbb{P}\left(\bigcup_{s \in \mathcal{S}} \mathcal{U}_s(t)\right)$$

for all $\mathcal{S} \in 2^{\mathcal{V}}$, where

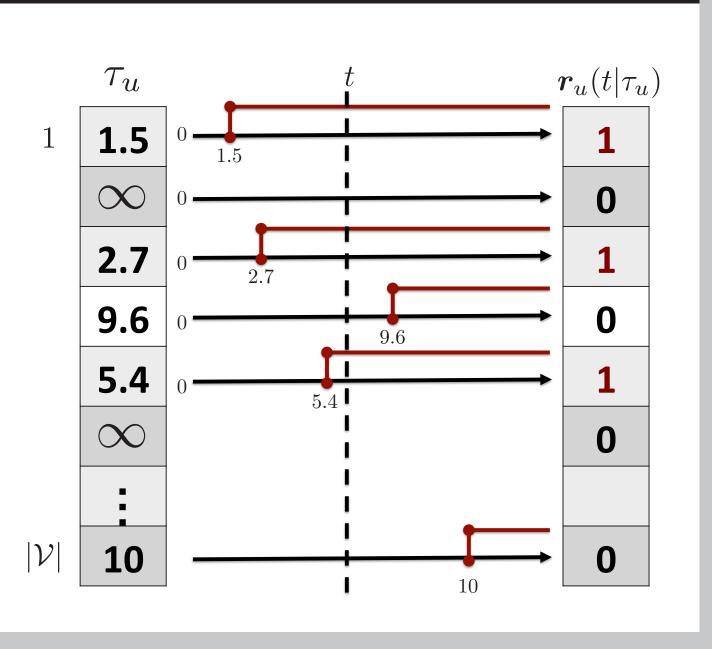
• The ground set \mathcal{U} with

 $\blacktriangleright \sigma$ -algebra \mathscr{A}

- ▶ Probability measure P
- ► Normalization constant Z
- $\mathcal{U}_{s}(t) \subseteq \mathcal{U}$: the set covered by item $s \in V$ at time t
- $\mathcal{U}_{s}(t) \subseteq \mathcal{U}_{s}(\tau)$ for all $t \leq \tau$ and $s \in \mathcal{V}$

REPRESENTATION

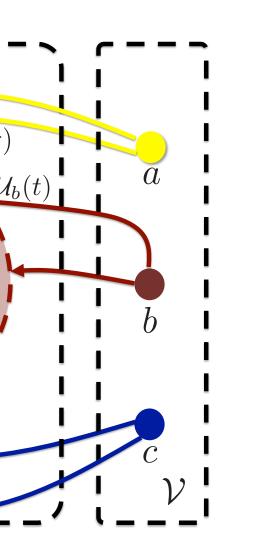
- $\lor \forall u \in \mathcal{U}, |\mathcal{V}|$ -dimensional vector au_{μ}^{s} = time being covered by s.
- $\blacktriangleright \mathbf{r}_{u}(t) : \mathbb{R}_{+} \mapsto \{\mathbf{0}, \mathbf{1}\}^{|\mathcal{V}|} \text{ indicates}$ whether *u* is covered at time *t* by each $s \in \mathcal{V}$.
- **Lemma** we can represent $f(\mathcal{S},t) = Z \cdot \mathbb{E}_{ au \sim \mathbb{Q}(au)} \left[\phi(oldsymbol{\chi}_{\mathcal{S}}^{ op} oldsymbol{r}(t|oldsymbol{ au}))
 ight]$ where $\phi(x) := \min\{x, 1\}$, and $\mathbf{r}(t|\tau)$ is a multidimensional step function based on τ .



LEARNING TIME-VARYING COVERAGE FUNCTIONS

NAN DU^{\dagger}

[†]GEORGIA INSTITUTE OF TECHNOLOGY, [‡]PRINCETON UNIVERSITY, [◊] CARNEGIE MELLON UNIVERSITY



MODEL FORMULATION BY COUNTING PROCESS

 $\blacktriangleright N(t) = \Lambda(t) + M(t)$ where N(t) : counting process $\wedge \Lambda(t) :$ cumulative intensity function M(t) : zero-mean martingale • Assume each source set S_i induces a counting process $N_i(t)$ $\blacktriangleright N_i(t) = f(\mathcal{S}_i, t) + M_i(t)$ $\mathbf{I} f(\mathcal{S}_i, t) = \int_0^t a(\mathcal{S}_i, \tau) d\tau$ • $a(S_i, t)$: intensity function **PARAMETRIZATION** • Kernel Smoothing : convolve the non-smooth intensity a(S, t) with $K(t) = k(t/\sigma)/\sigma$ where σ is the bandwidth to get a smoothed intensity $a^{\mathsf{K}}(\mathcal{S},t) = \mathsf{K}(t) \star (df(\mathcal{S},t)/dt) = Z \cdot \mathbb{E}_{\tau \sim \mathbb{Q}(\tau)} [\mathsf{K}(t-t(\mathcal{S},\tau))].$ where $t(S, \tau)$ is the time when function $\phi(\chi_S^{\top} r(t|\tau))$ jumps from 0 to 1. ► Random Approximation : $\mathbb{Q}'(\tau)/C \leq \mathbb{Q}(\tau) \leq C\mathbb{Q}'(\tau), \{\tau_i\} \overset{i.i.d.}{\sim} \mathbb{Q}'(\tau)$

$$\mathcal{A} = \left\{ a_{\boldsymbol{w}}^{\mathcal{K}}(\mathcal{S}, t) = \sum_{i=1}^{\mathcal{W}} w_i \, \mathcal{K}(t - t(\mathcal{S}, \tau_i)) : \, \boldsymbol{w} \geqslant 0, \frac{Z}{C} \leqslant \|\boldsymbol{w}\|_1 \leqslant ZC \right\}.$$

▶ Lemma If $W = \tilde{O}(Z^2/(\epsilon \sigma)^2)$, with probability $\geq 1 - \delta$, $\exists \tilde{a} \in \mathcal{A}$ such that $\mathbb{E}_{\mathcal{S}}\mathbb{E}_{t}\left[(a(\mathcal{S},t)-\widetilde{a}(\mathcal{S},t))^{2}\right] = \mathbb{E}_{\mathcal{S}\sim\mathbb{P}(\mathcal{S})}\int_{0}^{T}\left[(a(\mathcal{S},t)-\widetilde{a}(\mathcal{S},t))^{2}\right]dt/T = 1$ $O(\epsilon^2 + \sigma^4)$

LEARNING ALGORITHM : TCOVERAGELEARNER

• Given *m i.i.d.* counting processes, $\mathcal{D}^m := \{$ observation time T, the log-likelihood is

$$\ell(\mathcal{D}^m|a) = \sum_{i=1}^m \left\{ \int_0^T \{ \log a(\mathcal{S}_i, t) \} dN_i(t) - \int_0^T a(\mathcal{S}_i, t) dt \right\}.$$

▶ Plugging the parametrization $a_w^K(S, t)$ to solve

$$\min_{\boldsymbol{w}} \sum_{i=1}^{m} \left\{ \boldsymbol{w}^{\top} \boldsymbol{g}_{i} - \sum_{t_{ij} < T} \log \left(\boldsymbol{w}^{\top} \boldsymbol{k}(t_{ij}) \right) \right\}$$

where we define t_{ii} as the *j*-th event occurs in the *i*-th process.

$$\boldsymbol{g}_{ik} = \int_0^T K(t - t(\mathcal{S}_i, \boldsymbol{\tau}_k)) dt$$
 and

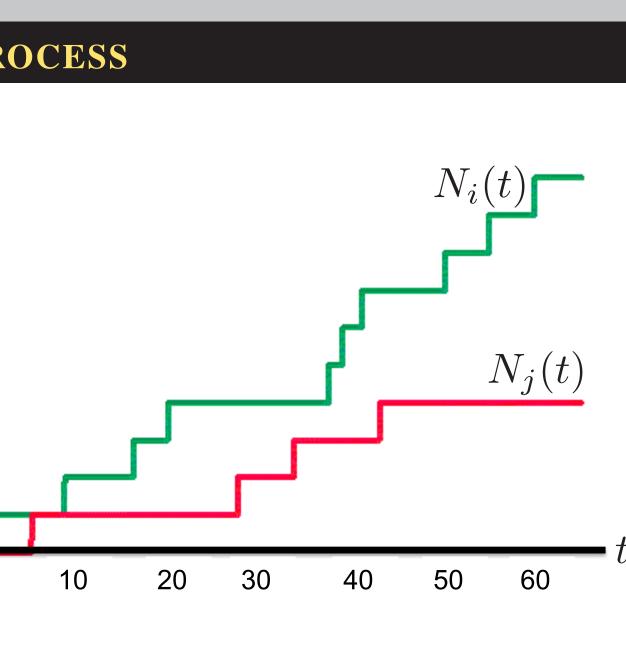
- With Gaussian RBF kernel $\boldsymbol{g}_{ik} = \frac{1}{2} \left\{ \text{erfc} \left(-\frac{1}{2} \right) \right\}$
- Sample $\{\tau_i\} \overset{i.i.d.}{\sim} \mathbb{Q}'(\tau)$ from training data
- ▶ N_s = number of counting processes induced by $s \in V$. • \mathcal{J}_s = collection of all the jumping time before 7
- ▶ in probability $|\mathcal{J}_s|/|\mathcal{V}|N_s$, uniformly sample τ_i^s from \mathcal{J}_s ; else, $\tau_i^s = \infty$.

SAMPLE COMPLEXITY

Suppose $W = \tilde{O}\left(Z^2\left[\left(\frac{ZT}{\epsilon}\right)^{5/2} + \left(\frac{ZT}{\epsilon a_{\min}}\right)^{5/4}\right]\right)$ Then with probability $\geq 1 - \delta$ over the random that for any $0 \le t \le T$,

$$\mathbb{E}_{\mathcal{S}}\left[\widehat{f}(\mathcal{S},t)-f(\mathcal{S},t)\right]^2\leq\epsilon.$$

YINGYU LIANG[‡] MARIA-FLORINA BALCAN^{\diamond} LE SONG[†]



$$(S_1, N_1(t)), \ldots, (S_m, N_m(t))\}$$
 up to

subject to $\boldsymbol{w} \ge 0, \|\boldsymbol{w}\|_1 \le 1,$

$$\boldsymbol{k}_{l}(t_{ij}) = K(t_{ij} - t(\mathcal{S}_{i}, \boldsymbol{\tau}_{l})).$$
$$-\frac{t(\mathcal{S}_{i}, \boldsymbol{\tau}_{k})}{\sqrt{2}\sigma} - \operatorname{erfc}\left(\frac{T - t(\mathcal{S}_{i}, \boldsymbol{\tau}_{k})}{\sqrt{2}\sigma}\right) \Big\}.$$

) and
$$m = \tilde{O}\left(rac{ZT}{\epsilon}[W + \epsilon_{\ell}]
ight).$$

om sample of $\{m{ au}_i\}_{i=1}^W$, we have

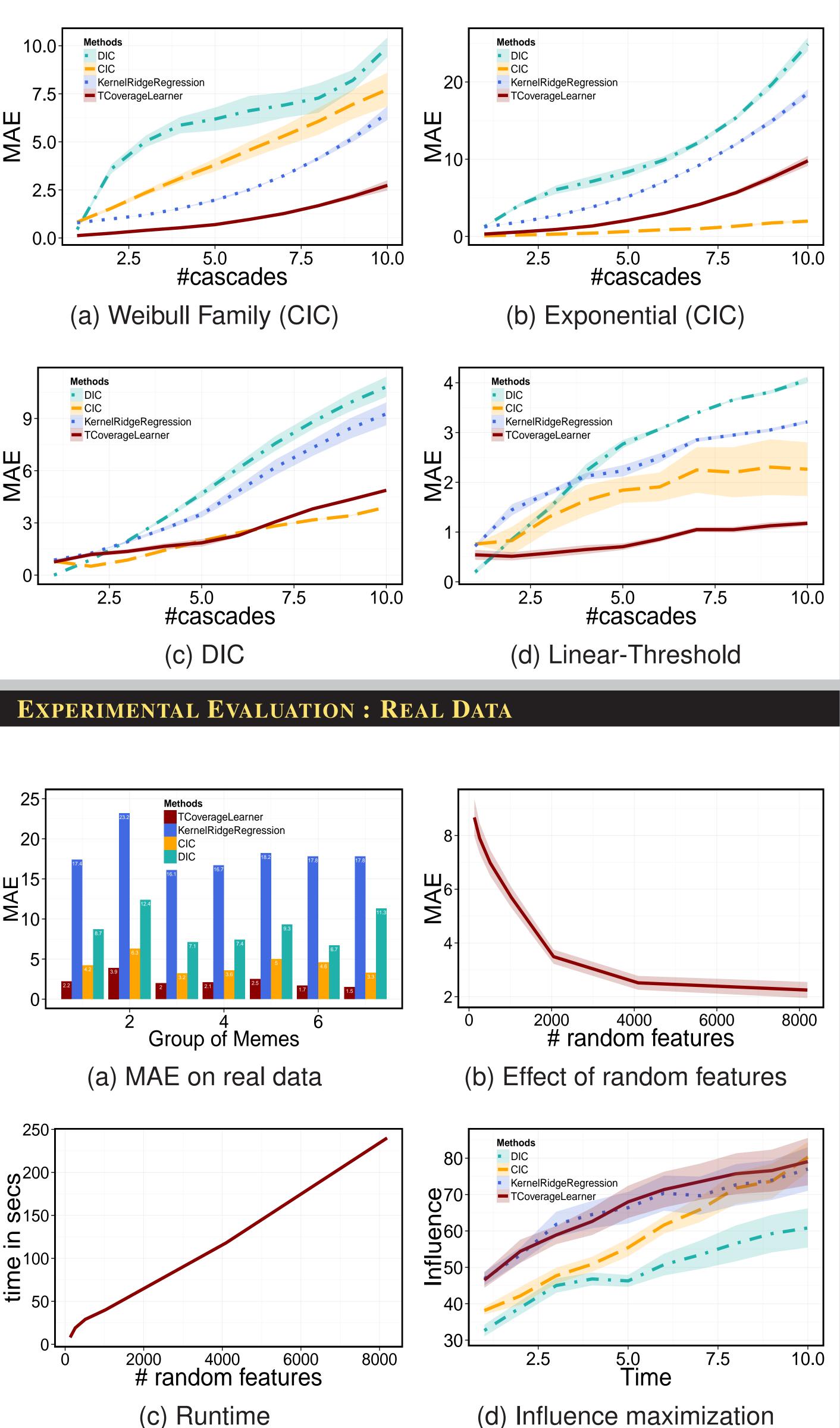
NIPS 2014, MONTREAL, CANADA

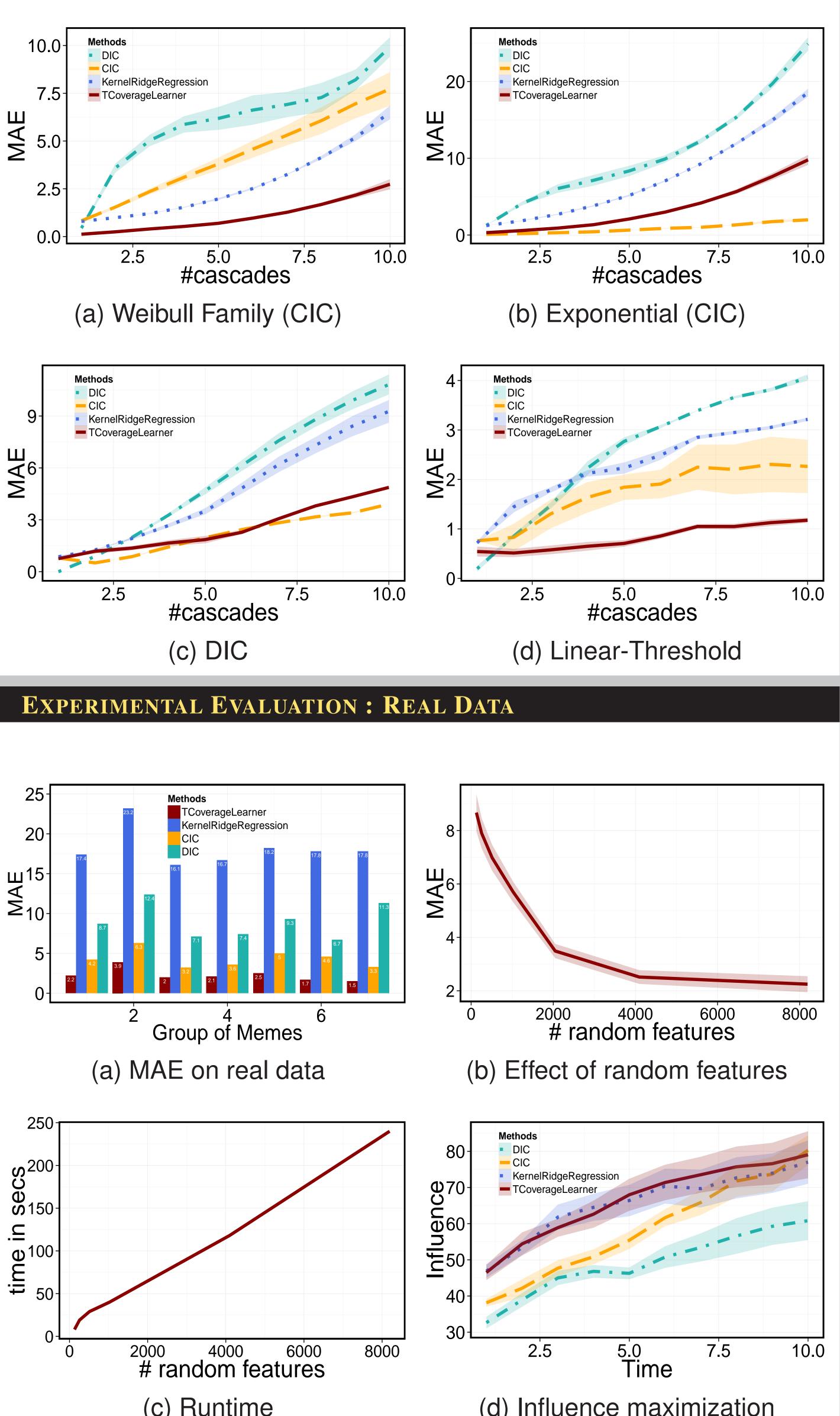
EXPERIMENTAL EVALUATION : COMPETITORS

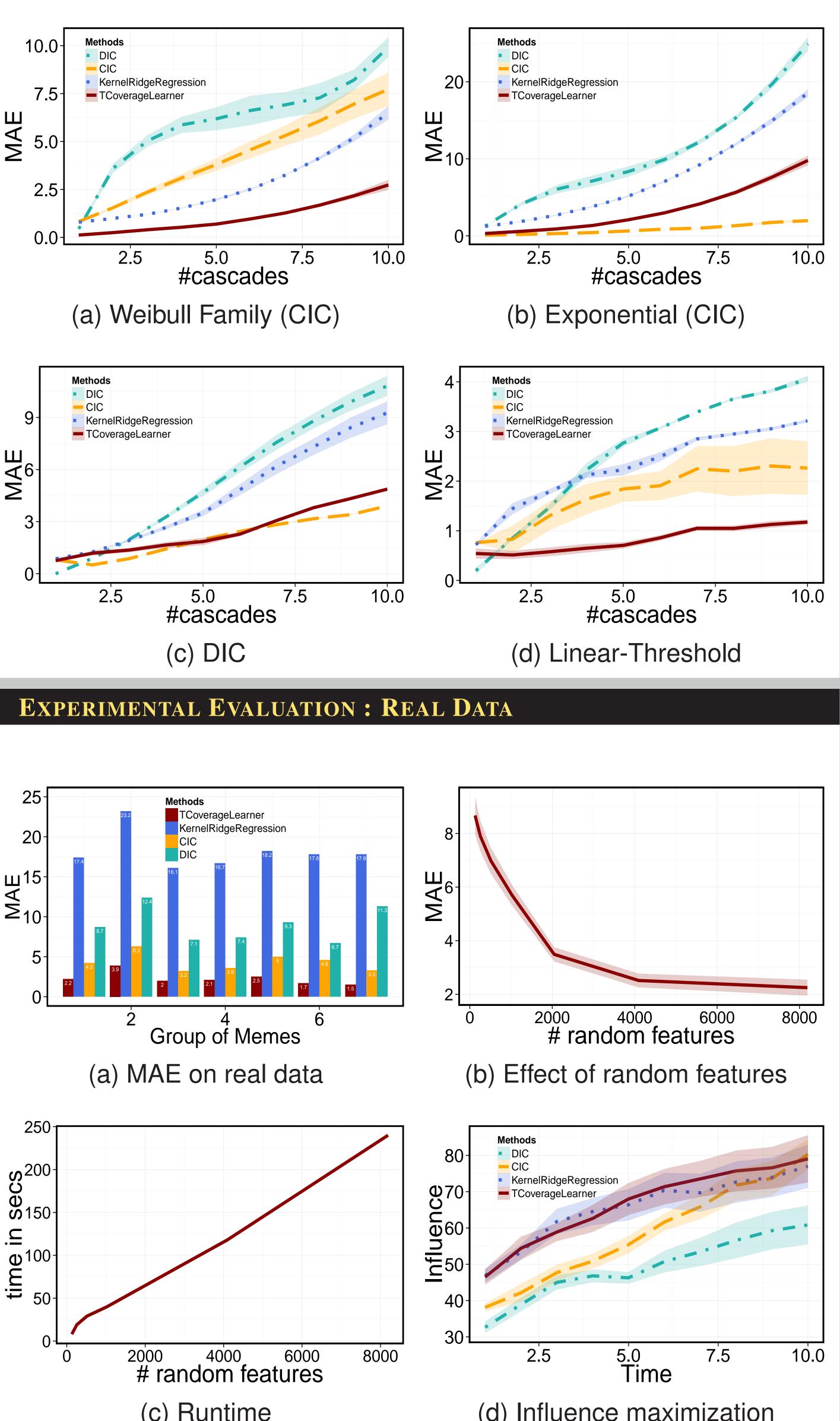
- transmission function (CIC).
- Discrete-time Independent Cascade model (DIC).
- Kernel Ridge Regression

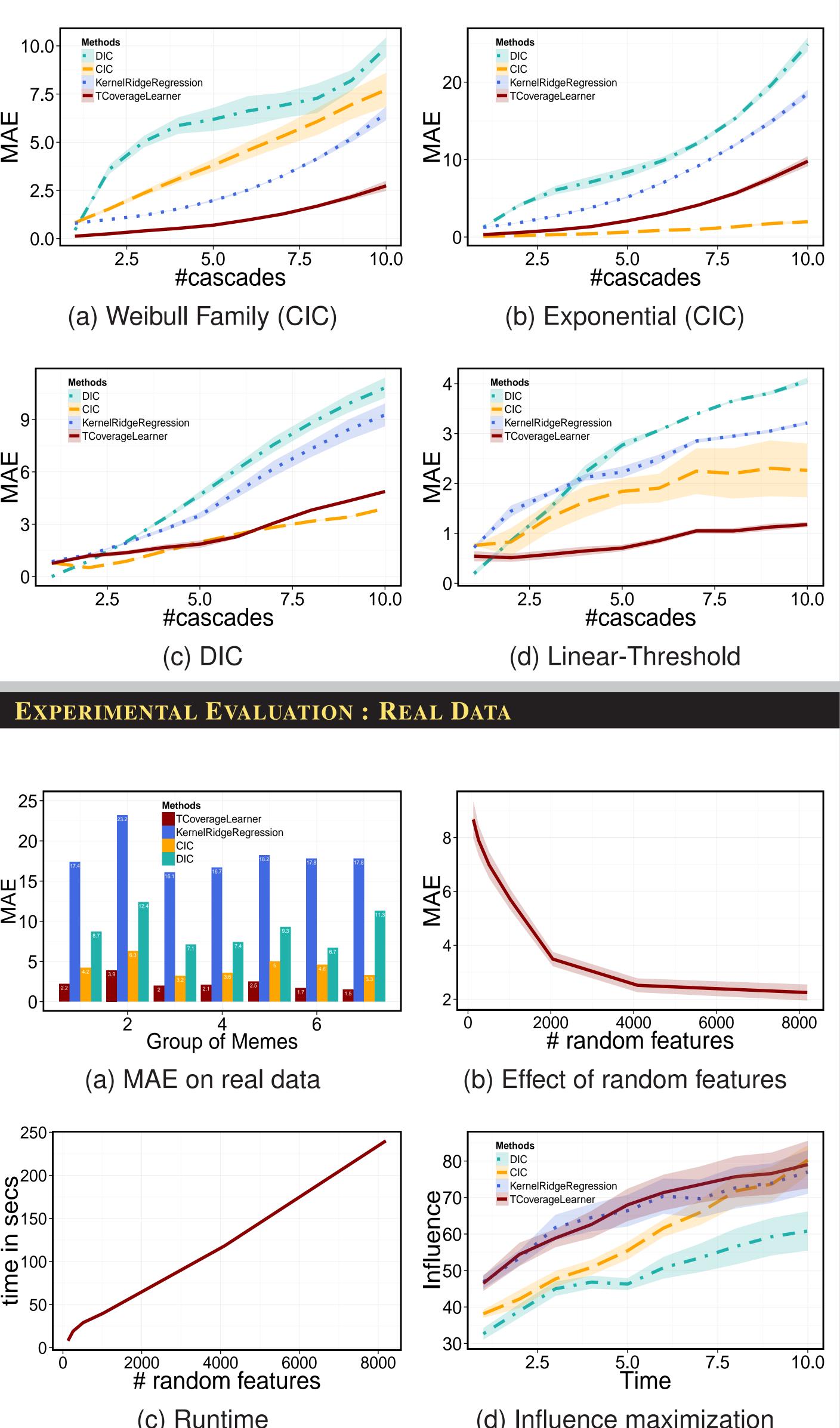
EXPERIMENTAL EVALUATION : SYNTHETIC DATA

Robustness to model mis-specifications









Continuous-time Independent Cascade model with exponential pairwise