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Abstract

Coverage functions are an important class of discrete functions that capture laws
of diminishing returns. In this paper, we propose a new problem of learning time-
varying coverage functions which arise naturally from applications in social net-
work analysis, machine learning, and algorithmic game theory. We develop a
novel parametrization of the time-varying coverage function by illustrating the
connections with counting processes. We present an efficient algorithm to learn
the parameters by maximum likelihood estimation, and provide a rigorous theo-
retic analysis of its sample complexity. Empirical experiments from information
diffusion in social network analysis demonstrate that with few assumptions about
the underlying diffusion process, our method performs significantly better than
existing approaches on both synthetic and real world data.

1 Introduction

Coverage functions are a special class of the more general submodular functions which play impor-
tant role in combinatorial optimization with many interesting applications in social network anal-
ysis [1], machine learning [2], economics and algorithmic game theory [3], etc. A particularly
important example of coverage functions in practice is the influence function of users in information
diffusion modeling [1] — news spreads across social networks by word-of-mouth and a set of influ-
ential sources can collectively trigger a large number of follow-ups. Another example of coverage
functions is the valuation functions of customers in economics and game theory [3] — customers are
thought to have certain requirements and the items being bundled and offered fulfill certain subsets
of these demands.

Theoretically, it is usually assumed that users’ influence or customers’ valuation are known in ad-
vance as an oracle. In practice, however, these functions must be learned. For example, given past
traces of information spreading in social networks, a social platform host would like to estimate
how many follow-ups a set of users can trigger. Or, given past data of customer reactions to differ-
ent bundles, a retailer would like to estimate how likely customer would respond to new packages of
goods. Learning such combinatorial functions has attracted many recent research efforts from both
theoretical and practical side (e.g., [4, 5, 6, 7, 8]), many of which show that coverage functions can
be learned from just polynomial number of samples.

However, the prior work has widely ignored an important dynamic aspect of the coverage functions.
For instance, information spreading is a dynamic process in social networks, and the number of
follow-ups of a fixed set of sources can increase as observation time increases. A bundle of items
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or features offered to customers may trigger a sequence of customer actions over time. These real
world problems inspire and motivate us to consider a novel time-varying coverage function, f(S, t),
which is a coverage function of the set S when we fix a time t, and a continuous monotonic function
of time t when we fix a set S. While learning time-varying combinatorial structures has been ex-
plored in graphical model setting (e.g., [9, 10]), as far as we are aware of, learning of time-varying
coverage function has not been addressed in the literature. Furthermore, we are interested in esti-
mating the entire function of t, rather than just treating the time t as a discrete index and learning
the function value at a small number of discrete points. From this perspective, our formulation is the
generalization of the most recent work [8] with even less assumptions about the data used to learn
the model.

Generally, we assume that the historical data are provided in pairs of a set and a collection of times-
tamps when caused events by the set occur. Hence, such a collection of temporal events associated
with a particular set Si can be modeled principally by a counting process Ni(t), t > 0 which is a
stochastic process with values that are positive, integer, and increasing along time [11]. For instance,
in the information diffusion setting of online social networks, given a set of earlier adopters of some
new product, Ni(t) models the time sequence of all triggered events of the followers, where each
jump in the process records the timing tij of an action. In the economics and game theory setting, the
counting process Ni(t) records the number of actions a customer has taken over time given a partic-
ular bundled offer. This essentially raises an interesting question of how to estimate the time-varying
coverage function from the angle of counting processes. We thus propose a novel formulation which
builds a connection between the two by modeling the cumulative intensity function of a counting
process as a time-varying coverage function. The key idea is to parametrize the intensity function
as a weighted combination of random kernel functions. We then develop an efficient learning algo-
rithm TCOVERAGELEARNER to estimate the parameters of the function using maximum likelihood
approach. We show that our algorithm can provably learn the time-varying coverage function using
only polynomial number of samples. Finally, we validate TCOVERAGELEARNER on both influence
estimation and maximization problems by using cascade data from information diffusion. We show
that our method performs significantly better than alternatives with little prior knowledge about the
dynamics of the actual underlying diffusion processes.

2 Time-Varying Coverage Function
We will first give a formal definition of the time-varying coverage function, and then explain its
additional properties in details.

Definition. Let U be a (potentially uncountable) domain. We endow U with some σ-algebra A and
denote a probability distribution on U by P. A coverage function is a combinatorial function over a
finite set V of items, defined as

f(S) := Z · P
(⋃

s∈S
Us
)
, for all S ∈ 2V , (1)

where Us ⊂ U is the subset of domain U covered by item s ∈ V , and Z is the additional nor-
malization constant. For time-varying coverage functions, we let the size of the subset Us to grow
monotonically over time, that is

Us(t) ⊆ Us(τ), for all t 6 τ and s ∈ V , (2)
which results in a combinatorial temporal function

f(S, t) = Z · P
(⋃

s∈S
Us(t)

)
, for all S ∈ 2V . (3)

In this paper, we assume that f(S, t) is smooth and continuous, and its first order derivative with
respect to time, f ′(S, t), is also smooth and continuous.

Representation. We now show that a time-varying coverage function, f(S, t), can be represented as
an expectation over random functions based on multidimensional step basis functions. In particular,
since Us(t) is varying over time, we can associate each u ∈ U with a |V|-dimensional step function

ru(t) : R+ 7→ {0, 1}|V| , (4)
where the s-th dimension of ru(t) is 1 if u is covered by the set Us(t) at time t, and 0 otherwise. We
will further denote the change points of the multidimensional step function by a vector τu ∈ R|V|+ .
To emphasize the dependence of the function ru(t) on τu, we will also write ru(t) as ru(t|τu).

2



We denote the indicator vector of a set S by χS ∈ {0, 1}|V| where the s-th dimension of χS is
1 if s ∈ S , and 0 otherwise. Then u ∈ U is covered by

⋃
s∈S Us(t) at time t if χ>S ru(t) > 1.

Furthermore, we have the following representation of the time-varying coverage function :

Lemma 1. There exists a distribution Q(τ ) over the vector of change points τ , such that the time-
varying coverage function can be represented as

f(S, t) = Z · Eτ∼Q(τ )

[
φ(χ>S r(t|τ ))

]
(5)

where φ(x) := min {x, 1}, and r(t|τ ) is a multidimensional step function parameterized by the
vector of change point τ .

Proof. Let US :=
⋃
s∈S Us(t). Based on definition (3), we have the following integral representa-

tion

f(S, t) = Z ·
∫
U
I {u ∈ US} dP(u) = Z ·

∫
U
φ(χ>S ru(t)) dP(u) = Z · Eu∼P(u)

[
φ(χ>S ru(t))

]
.

Since each multidimensional step function ru(t) has a vector of change points τu associated with it,
we can define the set of u having the same τ as Uτ := {u ∈ U | τu = τ}. Based on the partition of
the U space using τ , we can define a distribution over τ as dQ(τ ) :=

∫
Uτ dP(u). Then the integral

representation of f(S, t) can be rewritten as

Z · Eu∼P(u)
[
φ(χ>S ru(t))

]
= Z · Eτ∼Q(τ )

[
φ(χ>S r(t|τ ))

]
,

which proves the lemma.

3 Model for Observations
In general, we assume that the input data are provided in the form of pairs, (Si, Ni(t)), where Si is
a set, and Ni(t) is a counting process in which each jump of Ni(t) records the timing of an event.
We first give a brief overview of a counting process [11] and then motivate our model in details.

Counting Process. Formally, a counting process {N(t), t > 0} is any nonnegative, integer-valued
stochastic process such that N(t′) 6 N(t) whenever t′ 6 t and N(0) = 0. The most common
use of a counting process is to count the number of occurrences of temporal events happening along
time, so the index set is usually taken to be the nonnegative real numbers R+. A counting process
is a submartingale: E[N(t) |Ht′ ] > N(t′) for all t > t′ whereHt′ denotes the history up to time t′.
By Doob-Meyer theorem [11], N(t) has the unique decomposition:

N(t) = Λ(t) +M(t) (6)
where Λ(t) is a nondecreasing predictable process called the compensator (or cumulative intensity),
and M(t) is a mean zero martingale. Since E[dM(t) |Ht− ] = 0, where dM(t) is the increment of
M(t) over a small time interval [t, t+ dt), andHt− is the history until just before time t,

E[dN(t) |Ht− ] = dΛ(t) := a(t) dt (7)
where a(t) is called the intensity of a counting process.

Model formulation. We assume that the cumulative intensity of the counting process is modeled
by a time-varying coverage function, i.e., the observation pair (Si, Ni(t)) is generated by

Ni(t) = f(Si, t) +Mi(t) (8)
in the time window [0, T ] for some T > 0, and df(S, t) = a(S, t)dt. In other words, the time-
varying coverage function controls the propensity of occurring events over time. Specifically, for a
fixed set Si, as time t increases, the cumulative number of events observed grows accordingly for
that f(Si, t) is a continuous monotonic function over time; for a given time t, as the set Si changes
to another set Sj , the amount of coverage over domain U may change and hence can result in a
different cumulative intensity. This abstract model can be mapped to real world applications. In
the information diffusion context, for a fixed set of sources Si, as time t increases, the number of
influenced nodes in the social network tends to increase; for a given time t, if we change the sources
to Sj , the number of influenced nodes may be different depending on how influential the sources
are. In the economics and game theory context, for a fixed bundle of offers Si, as time t increases, it
is more likely that the merchant will observe the customers’ actions in response to the offers; even
at the same time t, different bundles of offers, Si and Sj , may have very different ability to drive the
customers’ actions.
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Compared to a regression model yi = g(Si) + εi with i.i.d. input data (Si, yi), our model outputs
a special random function over time, that is, a counting process Ni(t) with the noise being a zero
mean martingale Mi(t). In contrast to functional regression models, our model exploits much more
interesting structures of the problem. For instance, the random function representation in the last
section can be used to parametrize the model. Such special structure of the counting process allows
us to estimate the parameter of our model using maximum likelihood approach efficiently, and the
martingale noise enables us to use exponential concentration inequality in analyzing our algorithm.

4 Parametrization
Based on the following two mild assumptions, we will show how to parametrize the intensity func-
tion as a weighted combination of random kernel functions, learn the parameters by maximum
likelihood estimation, and eventually derive a sample complexity.

(A1) a(S, t) is smooth and bounded on [0, T ]: 0 < amin 6 a 6 amax < ∞, and ä := d2a/dt2

is absolutely continuous with
∫
ä(t)dt <∞.

(A2) There is a known distribution Q′(τ ) and a constant C with Q′(τ )/C 6 Q(τ ) 6 CQ′(τ ).

Kernel Smoothing To facilitate our finite dimensional parameterization, we first convolve the
intensity function with K(t) = k(t/σ)/σ where σ is the bandwidth parameter and k is a kernel
function (such as the Gaussian RBF kernel k(t) = e−t

2/2/
√

2π) with

0 6 k(t) 6 κmax,

∫
k(t) dt = 1,

∫
t k(t) dt = 0, and σ2

k :=

∫
t2k(t) dt <∞. (9)

The convolution results in a smoothed intensity aK(S, t) = K(t) ? (dΛ(S, t)/dt) = d(K(t) ?
Λ(S, t))/dt. By the property of convolution and exchanging derivative with integral, we have that

aK(S, t) = d(Z · Eτ∼Q(τ )[K(t) ? φ(χ>S r(t|τ )])/dt by definition of Λ(·)
= Z · Eτ∼Q(τ )

[
d(K(t) ? φ(χ>S r(t|τ ))/dt

]
exchange derivative and integral

= Z · Eτ∼Q(τ ) [K(t) ? δ(t− t(S, r)] by property of convolution and function φ(·)
= Z · Eτ∼Q(τ ) [K(t− t(S, τ ))] by definition of δ(·)

where t(S, τ ) is the time when function φ(χ>S r(t|τ )) jumps from 0 to 1. If we choose small enough
kernel bandwidth, aK only incurs a small bias from a. But the smoothed intensity still results in
infinite number of parameters, due to the unknown distribution Q(τ ). To address this problem, we
design the following random approximation with finite number of parameters.

Random Function Approximation The key idea is to sample a collection of W random change
points τ from a known distribution Q′(τ ) which can be different from Q(τ). If Q′(τ ) is not very
far way from Q(τ ), the random approximation will be close to aK , and thus close to a. More
specifically, we will denote the space of weighted combination of W random kernel function by

A =

{
aKw(S, t) =

W∑
i=1

wiK(t− t(S, τi)) : w > 0,
Z

C
6 ‖w‖1 6 ZC

}
, {τi}

i.i.d.∼ Q′(τ ). (10)

Lemma 2. If W = Õ(Z2/(εσ)2), then with probability > 1 − δ, there exists an ã ∈ A such that
ESEt

[
(a(S, t)− ã(S, t))2

]
:= ES∼P(S)

∫ T
0

[
(a(S, t)− ã(S, t))2

]
dt/T = O(ε2 + σ4).

The lemma then suggests to set the kernel bandwidth σ = O(
√
ε) to get O(ε2) approximation error.

5 Learning Algorithm
We develop a learning algorithm, referred to as TCOVERAGELEARNER, to estimate the parameters
of aKw(S, t) by maximizing the joint likelihood of all observed events based on convex optimization
techniques as follows.

Maximum Likelihood Estimation Instead of directly estimating the time-varying coverage func-
tion, which is the cumulative intensity function of the counting process, we turn to estimate
the intensity function a(S, t) = ∂Λ(S, t)/∂t. Given m i.i.d. counting processes, Dm :=
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Algorithm 1 TCOVERAGELEARNER

INPUT : {(Si, Ni(t))} , i = 1, . . . ,m;
Sample W random features τ1, . . . , τW from Q′(τ);
Compute {t(Si, τw)} , {gi} , {k(tij)} , i ∈ {1, . . . ,m} , w = 1, . . . ,W, tij < T ;
Initialize w0 ∈ Ω = {w > 0, ‖w‖1 6 1};
Apply projected quasi-newton algorithm [12] to solve 12;
OUTPUT : aKw(S, t) =

∑W
i=1 wiK(t− t(S, τi))

{(S1, N1(t)), . . . , (Sm, Nm(t))} up to observation time T , the log-likelihood of the dataset is [11]

`(Dm|a) =

m∑
i=1

{∫ T

0

{log a(Si, t)} dNi(t)−
∫ T

0

a(Si, t) dt

}
. (11)

Maximizing the log-likelihood with respect to the intensity function a(S, t) then gives us the esti-
mation â(S, t). TheW -term random kernel function approximation reduces a function optimization
problem to a finite dimensional optimization problem, while incurring only small bias in the esti-
mated function.

Convex Optimization. By plugging the parametrization aKw(S, t) (10) into the log-likelihood (11),
we formulate the optimization problem as :

min
w

m∑
i=1

w>gi − ∑
tij<T

log
(
w>k(tij)

) subject to w > 0, ‖w‖1 6 1, (12)

where we define

gik =

∫ T

0

K (t− t(Si, τk)) dt and kl(tij) = K(tij − t(Si, τl)), (13)

tij when the j-th event occurs in the i-th counting process. By treating the normalization constant
Z as a free variable which will be tuned by cross validation later, we simply require that ‖w‖1 6 1.
By applying the Gaussian RBF kernel, we can derive a closed form of gik and the gradient O` as

gik =
1

2

{
erfc

(
− t(Si, τk)√

2h

)
− erfc

(
T − t(Si, τk)√

2h

)}
,O` =

m∑
i=1

gi − ∑
tij<T

k(tij)

w>k(tij)

 .

(14)

A pleasing feature of this formulation is that it is convex in the argument w, allowing us to apply
various convex optimization techniques to solve the problem efficiently. Specifically, we first draw
W random features τ1, . . . , τW from Q′(τ ). Then, we precompute the jumping time t(Si, τw)

for every source set {Si}mi=1 on each random feature {τw}Ww=1. Because in general |Si| << n,
this computation costs O(mW ). Based on the achieved m-by-W jumping-time matrix, we prepro-
cess the feature vectors {gi}mi=1 and k(tij), i ∈ {1, . . . ,m} , tij < T , which costs O(mW ) and
O(mLW ) where L is the maximum number of events caused by a particular source set before time
T . Finally, we apply the projected quasi-newton algorithm [12] to find the weightw that minimizes
the negative log-likelihood of observing the given event data. Because the evaluation of the objective
function and the gradient, which costs O(mLW ), is much more expensive than the projection onto
the convex constraint set, and L << n, the worst case computation complexity is thus O(mnW ).
Algorithm 1 summarizes the above steps in the end.

Sample Strategy. One important constitution of our parametrization is to sampleW random change
points τ from a known distribution Q′(τ ). Because given a set Si, we can only observe the jumping
time of the events in each counting process without knowing the identity of the covered items (which
is a key difference from [8]), the best thing we can do is to sample from these historical data.
Specifically, let the number of counting processes that a single item s ∈ V is involved to induce
be Ns, and the collection of all the jumping timestamps before time T be Js. Then, for the s-th
entry of τ , with probability |Js|/nNs, we uniformly draw a sample from Js; and with probability
1− |Js|/nNs, we assign a time much greater than T to indicate that the item will never be covered
until infinity. Given the very limited information, although this Q′(τ ) might be quite different from
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Q(τ ), by drawing sufficiently large number of samples and adjusting the weights, we expect it still
can lead to good results, as illustrated in our experiments later.

6 Sample Complexity
Suppose we use W random features to compute an ε`-MLE solution â, i.e.,

`(Dm|â) > max
a′∈A

`(Dm|a′)− ε`.

from m training samples. The goal is to analyze how well the function f̂ induced by â approximates
the true function f . This section describes a simple intuition of the analysis, and the complete proof
is provided in the appendix.

A natural choice for connecting the error between f and f̂ with the log-likelihood cost used in MLE
is the Hellinger distance [13]. So it suffices to prove an upper bound on the Hellinger distance
h(a, â) between â and the true intensity a, for which we need to show a high probability bound on
the (total) empirical Hellinger distance Ĥ2(a, a′) between the two. Here, h and Ĥ are defined as

h2(a, a′) :=
1

2
ES∼P(S)E06t6T

[√
a−
√
a′
]2
, and Ĥ2(a, a′) :=

1

2

m∑
i=1

∫ T

0

[√
a−
√
a′
]2
dt.

The key for the analysis is to show that the empirical Hellinger distance can be bounded by a mar-
tingale plus some additive error terms. This martingale is defined based on our hypotheses and the
martingales Mi associated with the counting process Ni:

M(t|g) :=

∫ t

0

g(t)d

(∑
i

Mi(t)

)
=

m∑
i=1

∫ t

0

g(t)dMi(t)

where g ∈ G =
{
ga′ = 1

2 log a+a′

2a : a′ ∈ A
}

. More precisely, we have the following lemma

Lemma 3. Suppose â is an ε`-MLE. Then

Ĥ2 (â, a) 6 16M(T ; gâ) + 4

[
`(Dm|a)−max

a′∈A
`(Dm|a′)

]
+ 4ε`.

The right hand side has three terms: the martingale (estimation error), the likelihood gap between
the truth and the best one in our hypothesis class (approximation error), and the optimization error.
We then focus on bounding the martingale and the likelihood gap.

To bound the martingale, we first introduce a notion called (d, d′)-covering dimension measuring the
complexity of the hypothesis class, and then prove a uniform convergence inequality based on this
notion. Compared to classic uniform inequality for counting process [14], our uniform inequality
is more general, and the complexity notion and the related conditions have more clear geometric
interpretation and are thus easier to verify. To bound the likelihood gap, we decompose it into three
terms, related to the martingale of the counting processes, the compensator, and the cumulative
difference between the two intensities, respectively. The first term can be bounded by constraining its
variance and applying martingale inequalities. The second term is just the KL-divergence, which can
be bounded by the `2 approximation error between ã and a in Lemma 2. Similarly, the cumulative
difference between the two intensities can be bounded by the `2 approximation error.

Combining the two leads to a bound on the Hellinger distance based on bounded dimension of the
hypothesis class. We then show that the dimension of our specific hypothesis class is at most the
number of random features W , and convert Ĥ2(â, a) to the desired `2 error bound on f and f̂ .

Theorem 4. Suppose W = Õ

(
Z2

[(
ZT
ε

)5/2
+
(

ZT
εamin

)5/4])
and m = Õ

(
ZT
ε [W + ε`]

)
. Then

with probability > 1− δ over the random sample of {τi}Wi=1, we have that for any 0 6 t 6 T ,

ES
[
f̂(S, t)− f(S, t)

]2
6 ε.

The theorem shows that the number of random functions needed to achieve ε error is roughly
O(ε−5/2), and the sample size is O(ε−7/2). They also depend on amin, which means with more
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Figure 1: MAE of the estimated influence on test data along time with the true diffusion model being
continuous-time independent cascade with pairwise Weibull (a) and Exponential (b) transmission
functions, (c) discrete-time independent cascade model and (d) linear-threshold cascade model.

random functions and data, we can deal with intensities with more extreme values. Finally, they
increase with the time T , i.e., it is more difficult to learn the function values at later time points.

7 Experiments

We evaluate TCOVERAGELEARNER on both synthetic and real world information diffusion data.
We show that our method can be more robust to model misspecification than other state-of-the-art
alternatives by learning a temporal coverage function all at once.

7.1 Competitors

Because our input data only include pairs of a source set and the temporal information of its trig-
gered events {(Si, Ni(t))}mi=1 with unknown identity, we first choose the general kernel ridge re-
gression model as the major baseline, which directly estimates the influence value of a source set
χS by f(χS) = k(χS)(K + λI)−1y where k(χS) = K(χSi ,χS), and K is the kernel ma-
trix. We discretize the time into several steps and fit a separate model to each of them. Between
two consecutive time steps, the predictions are simply interpolated. In addition, to further demon-
strate the robustness of TCOVERAGELEARNER, we compare it to the two-stage methods which
must know the identity of the nodes involved in an information diffusion process to first learn
a specific diffusion model based on which they can then estimate the influence. We give them
such an advantage and study three well-known diffusion models : (I) Continuous-time Independent
Cascade model(CIC)[15, 16]; (II) Discrete-time Independent Cascade model(DIC)[1]; and (III)
Linear-Threshold cascade model(LT)[1].

7.2 Influence Estimation on Synthetic Data

We generate Kronecker synthetic networks ([0.9 0.5;0.5 0.3]) which mimic real world information
diffusion patterns [17]. For CIC, we use both Weibull distribution (Wbl) and Exponential distribu-
tion (Exp) for the pairwise transmission function associated with each edge, and randomly set their
parameters to capture the heterogeneous temporal dynamics. Then, we use NETRATE [15] to learn
the model by assuming an exponential pairwise transmission function. For DIC, we choose the pair-
wise infection probability uniformly from 0 to 1 and fit the model by [18]. For LT, we assign the edge
weight wuv between u and v as 1/dv , where dv is the degree of node v following [1]. Finally, 1,024
source sets are sampled with power-law distributed cardinality (with exponent 2.5), each of which
induces eight independent cascades(or counting processes), and the test data contains another 128
independently sampled source sets with the ground truth influence estimated from 10,000 simulated
cascades up to time T = 10. Figure 1 shows the MAE(Mean Absolute Error) between the estimated
influence value and the true value up to the observation window T = 10. The average influence
is 16.02, 36.93, 9.7 and 8.3. We use 8,192 random features and two-fold cross validation on the
train data to tune the normalization Z, which has the best value 1130, 1160, 1020, and 1090, respec-
tively. We choose the RBF kernel bandwidth h = 1/

√
2π so that the magnitude of the smoothed

approximate function still equals to 1 (or it can be tuned by cross-validation as well), which matches
the original indicator function. For the kernel ridge regression, the RBF kernel bandwidth and the
regularization λ are all chosen by the same two-fold cross validation. For CIC and DIC, we learn
the respective model up to time T for once.
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Figure 2: (a) Average MAE from time 1 to 10 on seven groups of real cascade data; (b) Improved
estimation with increasing number of random features; (c) Runtime in log-log scale; (d) Maximized
influence of selected sources on the held-out testing data along time.

Figure 1 verifies that even though the underlying diffusion models can be dramatically different,
the prediction performance of TCOVERAGELEARNER is robust to the model changes and con-
sistently outperforms the nontrivial baseline significantly. In addition, even if CIC and DIC are
provided with extra information, in Figure 1(a), because the ground-truth is continuous-time dif-
fusion model with Weibull functions, they do not have good performance. CIC assumes the right
model but the wrong family of transmission functions. In Figure 1(b), we expect CIC should have
the best performance for that it assumes the correct diffusion model and transmission functions.
Yet, TCOVERAGELEARNER still has comparable performance with even less information. In Fig-
ure 1(c), although DIC has assumed the correct model, it is hard to determine the correct step size to
discretize the time line, and since we only learn the model once up to time T (instead of at each time
point), it is harder to fit the whole process. In Figure1(d), both CIC and DIC have the wrong model,
so we have similar trend as Figure synthetic(a). Moreover, for kernel ridge regression, we have to
first partition the timeline with arbitrary step size, fit the model to each of time, and interpolate the
value between neighboring time legs. Not only will the errors from each stage be accumulated to
the error of the final prediction, but also we cannot rely on this method to predict the influence of a
source set beyond the observation window T .

Overall, compared to the kernel ridge regression, TCOVERAGELEARNER only needs to be trained
once given all the event data up to time T in a compact and principle way, and then can be used to in-
fer the influence of any given source set at any particular time much more efficiently and accurately.
In contrast to the two-stage methods, TCOVERAGELEARNER is able to address the more general
setting with much less assumption and information but still can produce consistently competitive
performance.

7.3 Influence Estimation on Real Data
MemeTracker is a real-world dataset [19] to study information diffusion. The temporal flow of
information was traced using quotes which are short textual phrases spreading through the web-
sites. We have selected seven typical groups of cascades with the representative keywords like
‘apple and jobs’, ‘tsunami earthquake’, etc., among the top active 1,000 sites. Each set of cascades
is split into 60%-train and 40%-test. Because it is very often that we can only observe cascades
from single seed node, it is rare that we have cascades produced from multiple sources simul-
taneously. However, because our model can capture the correlation among multiple sources, we
challenge TCOVERAGELEARNER with sets of randomly chosen multiple source nodes on the in-
dependent hold-out data. Although the generation of sets of multiple source nodes is simulated,
the respective influence is calculated from the real test data as follows : Given a source set S, for
each node u ∈ S, let C(u) denote the set of cascades generated from u on the testing data. We
uniformly sample cascades from C(u). The average length of all sampled cascades is treated as
the true influence of S. We draw 128 source sets and report the average MAE along time in Fig-
ure 2(a). Again, we can observe that TCOVERAGELEARNER has consistent and robust estimation
performance across all testing groups. Figure 2(b) verifies that the prediction can be improved as
more random features are exploited, because the representational power of TCOVERAGELEARNER
increases to better approximate the unknown true coverage function. Figure 2(c) indicates that the
runtime of TCOVERAGELEARNER is able to scale linearly with large number of random features.
Finally, Figure 2(d) shows the application of the learned coverage function to the influence maxi-
mization problem along time, which seeks to find a set of source nodes that maximize the expected
number of infected nodes by time T . The classic greedy algorithm[20] is applied to solve the prob-
lem, and the influence is calculated and averaged over the seven held-out test data. It shows that
TCOVERAGELEARNER is very competitive to the two-stage methods with much less assumption.
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Because the greedy algorithm mainly depends on the relative rank of the selected sources, although
the estimated influence value can be different, the selected set of sources could be similar, so the
performance gap is not large.

8 Conclusions
We propose a new problem of learning temporal coverage functions with a novel parametrization
connected with counting processes and develop an efficient algorithm which is guaranteed to learn
such a combinatorial function from only polynomial number of training samples. Empirical study
also verifies our method outperforms existing methods consistently and significantly.
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A Approximation Error

Recall that we view our data as a marked counting process
Ni(t) = f(Si, t) +Mi(t).

where t ∈ [0, T ] and T is the time window, Si ⊆ V is the marker, and Mi(t) is a zero mean local
martingale.

We make the following assumptions for our analysis of the parametrization and estimation.

(A1) f(S, t) has derivative a(S, t) with respect to t. For any S, a(S, t) = df(S, t)/dt is smooth
and bounded on [0, T ]: a(S, t) is smooth and bounded on [0, T ]: 0 < amin 6 a 6 amax <
∞, and ä := d2a/dt2 is absolutely continuous with

∫
ä(t)dt <∞.

(A2) There is a known distribution Q′(τ ) and a constant C with Q′(τ )/C 6 Q(τ ) 6 CQ′(τ ).

Let aK denote the convolution of a with a kernel smoothing function K with bandwidth σ. More
precisely, K(t) = 1

σk( tσ ) and k is a kernel with

0 6 k(t) 6 κmax,

∫
k(t) dt = 1,

∫
t k(t) dt = 0, and σ2

k :=

∫
t2k(t) dt <∞.

Let

A =

{
aKw =

W∑
i=1

wiK(t− t(Si, τi)) : w > 0,
Z

C
6 ‖w‖1 6 ZC

}
denote our hypothesis class. In the following, we show that there exists ã ∈ A that is close to a
when the number of features W is sufficiently large. We first show that a is close to aK and then
show that there exists ã ∈ A close to aK . The first step follows directly from a classic result in
kernel density estimation.

Lemma 5 (e.g., Theorem 6.28 in [21]). For any S and t, aK(S, t)− a(S, t) = O(σ4).

For the second step, we have the following lemma based on the quantitive C measuring the differ-
ence between the true distribution Q of the features and the sample distribution Q′.

Lemma 6. Let P(S) be any distribution of S. Suppose τ1, . . . , τW are drawn i.i.d. from Q′(τ ), and

W = O
((

CZκmax

εσ

)2
log 1

δδ1

)
. Then with probability at least 1 − δ over τ1, . . . , τW , there exists

ã ∈ A such that,
Pr

S∼P(S)

{
Et
[
ã(S, t)− aK(S, t)

]2
> ε2

}
6 δ1.

Proof. Let ai(S, t) = Z Q(τi)
Q′(τi)K(t − t(S, τi)) for i = 1, . . . ,W . Then Eτi∼Q′(τi)[ai] = aK . Let

ã(S, t) = Z
W

∑W
i=1

Q(τi)
Q′(τi)K(t − t(S, τi)) be the sample average of these functions. Then ã ∈ A

since Z
CW 6 Z

W
Q(τi)
Q′(τi) 6

ZC
W .

Fix S, and consider the Hilbert space with the inner product

〈f, g〉 = Et [f(S, t)g(S, t)] =
1

T

∫ T

0

f(S, t)g(S, t)dt.

We now apply the following lemma, which states that the average of bounded vectors in a Hilbert
space concentrates towards its expectation in the Hilbert norm exponentially fast.

Claim 1 (Lemma 4 in [22]). LetX = {x1, · · · , xW } be iid random variables in a ball A of radius
M centered around the origin in a Hilbert space. Denote their average by X = 1

W

∑W
i=1 xi. Then

for any δ > 0, with probability 1− δ,

‖X − EX‖ 6 M√
W

(
1 +

√
2 log

1

δ

)
.
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Since ‖w‖1 6 CZ and |K| 6 κmax

σ , the norm ‖ai‖ 6 CZκmax

σ . Then when W =

O
((

CZκmax

εσ

)2
log 1

δδ1

)
, for any fixed S we have

Prτ

[
Et
[
ã(S, t)− aK(S, t)

]2
> ε2

]
6 δδ1

where Prτ is over the random sample of τ1, . . . , τW . This leads to

PrS∼P(S)Prτ

[
Et
[
ã(S, t)− aK(S, t)

]2
> ε2

]
6 δδ1

Exchanging PrS∼P(S) and Prτ by Fubini’s theorem, and then by Markov’s inequality, we have

Prτ

{
PrS∼P(S)

[
Et
[
ã(S, t)− aK(S, t)

]2
> ε2

]
> δ1

}
6 δ

This means with probability at least 1 − δ over the random features, on at least 1 − δ1 probability
mass of the distribution of S, Et

[
ã(S, t)− aK(S, t)

]2
6 ε2.

Combining the two, we have the following approximation error bound.

Lemma 2 Let P(S) be any distribution of S. Suppose τ1, . . . , τW are drawn i.i.d. from Q′(τ ), and

W = O
((

CZκmax

εσ

)2
log 1

δδ1

)
. Then with probability at least 1 − δ over τ1, . . . , τW , there exists

ã ∈ A such that with probability at least 1− δ1 over S,

Et [ã(S, t)− a(S, t)]2 6 ε2 +O(σ4).

Consequently, if W = O
((

CZκmax

εσ

)2
log amax+CZκmax

δε

)
, with probability at least 1 − δ over

τ1, . . . , τW , there exists ã ∈ A such that

ESEt [ã(S, t)− a(S, t)]2 = O(ε2 + σ4).

Proof. The first statement follows from Lemma 5 and 6. Since [ã(S, t)− a(S, t)]2 6 C1 :=
(amax + CZκmax)2, we can set δ1 = ε2/C1. Then

ESEt [ã(S, t)− a(S, t)]2 6 (1− δ1)(ε2 +O(σ4)) + δ1C1 = O(ε2 + σ4)

which completes the proof.

For convenience, let ε2a := O(ε2 + σ4) denote the `2 approximation error.

B Sample Complexity

Setup Recall that the true intensity a is bounded on [0, T ]:
0 < amin 6 a 6 amax <∞.

The kernel K is also bounded on [0, T ]:
0 < κmin 6 K(t) 6 κmax,∀t ∈ [0, T ]

where κmin := mint∈[0,T ]K(t) > 0 is satisfied for typical kernels, e.g., the Gaussian kernel. Our
hypothesis class is

A =

{
aKw =

W∑
i=1

wiK(t− t(Si, τi)) : w > 0,
Z

C
6 ‖w‖1 6 ZC

}
and thus aKw is also bounded: ∀a′ ∈ A,

0 < awmin :=
Zκmin

C
6 a′(S, t) 6 awmax := CZκmax,∀S, t ∈ [0, T ].

With the exception of κmin and awmin that depend on σ, all other parameters are treated as constants.
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We observe Dm = {(Si, Ni(t))}mi=1, and we want to fit a(S, t) by aKw(S, t) by using maximum
likelihood estimation (MLE). The log-likelihood is defined as

`(Dm|a′) :=

m∑
i=1

∫ T

0

[log a′(Si, t)] dNi(t) +

m∑
i=1

∫ T

0

a′(Si, t)dt

and we optimize the log-likelihood to find an approximate solution.
Definition 7. We say that â ∈ A is an ε`-MLE if

`(Dm|â) > max
a′∈A

`(Dm|a′)− ε`.

Analysis Roadmap Our final goal is to bound the `2 error between the truth f(t) and the function
f̂(t) =

∫ t
0
â(s)ds induced by the MLE output â. A natural choice for connecting `2 error with the

log-likelihood cost used in MLE is the Hellinger distance. So it suffices to prove an upper bound on
the hellinger distance between the MLE output â and the truth a, for which we need to show a high
probability bound on the empirical Hellinger distance between the two. The key for the analysis is
to show that the empirical Hellinger distance can be bounded by a martingale plus some additive
error terms. This martingale is defined based on the martingales Mi associated with the counting
process Ni. The additive error terms are the optimization error and the likelihood gap between the
truth and the best one in our hypothesis class. Therefore, our analysis focuses on two parts: a high
probability bound for the martingale, and a high probability bound on the likelihood gap.

To bound the martingale, we need to show a uniform convergence inequality. We first introduce
a dimension notion measuring the complexity of the hypothesis class, and then prove the uniform
convergence based on this notion. Compared to classic uniform inequality for (unmarked) counting
process [14], our uniform inequality is for marked counting processes, and the complexity notion
and the related conditions have more clear geometric interpretation and are thus easier to verify.

To bound the likelihood gap, we decompose it into three terms, related respectively to the martingale
part of the counting processes, the compensate part of the counting processes, and the cumulative
difference between the two intensities a and â. The first term can be bounded by bounding its vari-
ance and applying a classic martingale inequality. The second term reduces to the KL-divergence,
which can be bounded by the `2 approximation error between the truth and the hypotheses. Simi-
larly, the cumulative difference between the two intensities can be bounded by the `2 approximation
error.

We then combine the two to get a bound on the Hellinger distance between the MLE output and the
truth based on the dimension of the hypothesis class. This bound is for general hypothesis class, so
we bound the dimension of our specific hypothesis class. Finally, we convert the Hellinger distance
between the MLE output and the truth to the desired `2 error bound on f and f̂ .

The rest of the section is organized as follows. We first show the construction of the key martingale
upper bound for the Hellinger distance in Section B.1, and then show how to bound the martingale
and the likelihood gap in Section B.2 and Section B.3 respectively. In Section B.4 we provide the
general bound for the Hellinger distance based on the dimension of the hypothesis class. Finally, in
Section B.5 we bound the dimension of our hypothesis class and convert the Hellinger distance to
`2 error, achieving the final bound for learning time varying coverage functions.

B.1 Constructing a Martingale Upper Bound

More precisely, the Hellinger distance is defined as

h2(a, a′) =
1

2
ESEt

[√
a(S, t)−

√
a′(S, t)

]2
where ES is with respect to the random drawing of S, and Et [g(t)] denotes 1

T

∫ T
0
g(t)dt. Define the

(total) empirical Hellinger distance as

Ĥ2(a, a′) =
1

2

m∑
i=1

∫ T

0

[√
a(Si, t)−

√
a′(Si, t)

]2
dt

and note that ESEt
[
Ĥ2(a, a′)

]
= mTh2(a, a′).
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Define a martingale

M(t|g) :=

∫ t

0

g(t)d

(∑
i

Mi(t)

)
=

m∑
i=1

∫ t

0

g(t)dMi(t) (15)

where Mi(t) is the martingale in the marked counting process (Si, Ni(t)), and g ∈ G where G is a
set of functions defined as

G =

{
ga′ =

1

2
log

a+ a′

2a
: a′ ∈ A

}
.

Let Vm(t; g) denote the m-th order corresponding variation process.

Define two distances on G:

d22,t(g, g
′) =

1

2

m∑
i=1

∫ t

0

[exp (g)− exp (g′)]
2
dΛi(t)

where Λi(t) = f(Si, t) is the compensator of Ni(t) and
d∞,t(g, g

′) = max
τ∈[0,t],S

|exp (g(S, τ))− exp (g′(S, τ))| .

Now we show that Ĥ(·, ·) can be bounded by a martingale plus some additive error terms.

Lemma 3 Suppose â is an ε`-MLE. Then

Ĥ2

(
â+ a

2
, a

)
6M(T |gâ) +

1

4

[
`(Dm|a)−max

a′∈A
`(Dm|a′)

]
+

1

4
ε`,

Ĥ2 (â, a) 6 16M(T |gâ) + 4

[
`(Dm|a)−max

a′∈A
`(Dm|a′)

]
+ 4ε`.

Proof. This is a generalization of Lemma 4.1 in [14] and the proof largely follows their arguments.

By definition, we have `(Dm|â) > maxa′∈A `(Dm|a′)− ε`. By the concavity of the log function,

`

(
Dm| â+ a

2

)
− `(Dm|a) =

m∑
i=1

∫ T

0

log

(
â+ a

2a0

)
dNi(t)−

m∑
i=1

∫ T

0

(
â+ a

2
− a
)
dt

>
1

2

m∑
i=1

∫ T

0

log

(
â

a

)
dNi(t)−

1

2

m∑
i=1

∫ T

0

(â− a)dt

=
1

2
[`(Dm|â)− `(Dm|a)]

>
1

2
[max
a′∈A

`(Dm|a′)− `(Dm|a)− ε`]. (16)

Now, for any b > 0 and hb := 1
2 log b

a ,

1

2
[`(Dm|b)− `(Dm|a)] = M(T |hb) +

m∑
i=0

∫ T

0

hbdΛi(t)−
1

2

m∑
i=0

∫ T

0

(b− a)dt

and
m∑
i=0

∫ T

0

hbdΛi(t)−
1

2

m∑
i=0

∫ T

0

(b− a)dt =

m∑
i=0

∫ T

0

log

√
b

a
dΛi(t)−

1

2

m∑
i=0

∫ T

0

(b− a)dt

6
m∑
i=0

∫ T

0

(√
b

a
− 1

)
dΛi(t)−

1

2

m∑
i=0

∫ T

0

(b− a)dt

=

m∑
i=0

∫ T

0

(√
ba− a

)
dt− 1

2

m∑
i=0

∫ T

0

(b− a)dt

= −Ĥ2(b, a).
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Then we have
1

2
[`(Dm|b)− `(Dm|b)] 6MT (hb)− Ĥ2(b, a).

This with b = (â + a)/2 combined with Inequality 16 completes the proof for the first statement,
since hb = gâ. For he second statement, we use the following claim.

Claim 2 ([13]). 2Ĥ2(a+b2 , a) 6 Ĥ2(b, a) 6 16Ĥ2(a+b2 , a).

The second statement then follows from the first statement.

B.2 Bounding the Martingale

We begin with some basics about martingales. Here, for a martingaleM(t), let Vn(t) denote its n-th
order variation process for n > 2, and let V (t) := V2(t). In particular,

V (t) := lim
n→∞

∑n

k=1
Var(∆Mk |H(k−1)t/n) (17)

where the time interval [0, t] is partitioned into n subintervals each of length t/n, and ∆Mk :=
M(kt/n) − M((k − 1)t/n) is the increment of the martingale over the kth of these intervals.
Informally, the increment dV (t) of the predictable variation process can be written as dV (t) =
Var(dM(t) |Ht−) = Var(dN(t) |Ht−), since a(t) is predictable given Ht− . Finally, dN(t) may
only take the value 0 or 1, and it follows that dV (t) = a(t)dt(1− a(t)dt) ≈ a(t)dt = dΛ(t). This
motivates the relation

V (t) =

∫ t

0

a(s) ds = Λ(t) (18)

which will be useful in our later analysis. The higher order moments are defined similarly.

The following two classic martingale inequalities will also be useful.
Lemma 8 ([23]). Suppose that |dM(t)| 6 CM for all t > 0 and some 0 6 CM <∞, and let V (t)
denote its variation process. Then for each x > 0, y > 0,

Pr
[
M(t) > x and V (t) 6 y2 for some t

]
< exp

[
− x2

2(xCM + y2)

]
.

Lemma 9 ([14]). Suppose for all t > 0 and some constant 0 < CM <∞,

Vn(t) 6
n!

2
Cn−2M R(t), ∀n > 2,

where R(t) is a predictable process. Then for each x > 0, y > 0,

Pr
[
M(t) > x and R(t) 6 y2 for some t

]
< exp

[
− x2

2(xCM + y2)

]
.

Uniform Inequality for Marked Counting Processes Now, we will prove a uniform inequality
for the martingale M(t|g) defined in (15), which is based on the marked counting process and the
function g ∈ G. Consider the following complexity notion for G based on a covering argument.
Definition 10. Suppose d and d′ are two families of metrics on G which are indexed by t, that is,
for any t > 0, dt and d′t are two metrics on G. The (d, d′)-covering dimension of G is the minimum
D > 1 such that there exist c1 > 1 and c2 > 1 satisfying the following. For each t > 0, each ε > 0
and each ball B ⊆ G with radius R > ε, one can find C ⊆ G with

|C| 6 (c1R/ε)
D

that is an ε-covering of B for the dt metric and a (c2ε)-covering for the d′t metric.

Based on this notion we have the following uniform inequality.
Theorem 11. Let D be the (d, d′)-covering dimension of G. Suppose for any g, g′ ∈ G, any n > 2,

Vn(t|g − g′) 6 C1
n!

2
Cn−22 d2t (g, g

′),

and

Vn(t|g − g′) 6 C3
n!

2
[C4d

′
t(g, g

′)]n−2d2t (g, g
′)
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where C1, C2, C3, C4 > 0 are some constants. Then there exists a constant C0 > 0, such that for
any g∗ ∈ G, we have that for any y > 0 and x > C0(y + 1)(z +D),

Pr [M(t|g − g∗) > x and dt(g∗, g) 6 y for some t and some g ∈ G] 6 exp [−z] .

Proof. Let M(·) denote M(t|·) for short. For each k = 0, 1, 2, . . . , for the ball B(g∗, y) and δk =
O(2−k)y, there exists a subset Ck of size exp {O(kD)} that is both a δk-covering with respect to dt
and a (rδk)-covering with respect to d′t for some constant r > 0. Let gk denote the one in Ck closest
to g. Since g = g0 +

∑∞
k=0(gk+1 − gk), we have

Pr [M(g − g∗) > x and d(g∗, g) 6 y for some t and some g ∈ G]

6
∑
g0∈C0

Pr [M(g0 − g∗) > η and dt(g0, g∗) 6 2y for some t]

+

∞∑
k=0

∑
gk,gk+1

Pr [M(gk − gk+1) > ηk and dt(gk, gk+1) 6 2δk for some t]

as long as η +
∑∞
k=0 ηk 6 x.

We have by Lemma 9 that

Pr [M(g0 − g∗) > η and dt(g0, g∗) 6 2y for some t] 6 exp

[
−O

(
η2

η + y2

)]
.

Also, for gk, gk+1 we have

Vn(t|gk − gk+1) 6 C3
n!

2
d2(gk, gk+1)[C4d

′
t(gk, gk+1)]n−2

6 C3
n!

2
d2t (gk, gk+1)[C4d

′
t(gk, g) + C4d

′
t(g, gk+1)]n−2

6 C3
n!

2
d2t (gk, gk+1)[C4rδk + C4rδk+1]n−2

6 C3
n!

2
d2t (gk, gk+1) [2C4rδk]

n−2
.

Then by Lemma 9,

Pr [M(gk − gk+1) > ηk and dt(gk, gk+1) 6 2δk for some t] 6 exp

[
−O

(
η2k

ηkδk + δ2k

)]
.

Note that η = O(y
√
z+ cz) ensures η2

cη+y2 > z. So we can choose η = O(y
√
z +D+ z+D) and

ηk = O(δk(z + kD)) so that the final statement holds.

We still need to verify η +
∑∞
k=0 ηk 6 x. Since η = O(y

√
z +D + z + D) and ηk = O(δk(z +

kD)) = O(2−ky(z + kD)), it suffices to have x = O((y + 1)(z +D)).

B.3 Bounding the Likelihood Gap

Lemma 12. Suppose there exists an ã ∈ A such that with probability at least 1 − δ1 over S,
Et (a′ − a)

2 6 ε2a. With probability > 1−mδ1 over {Si}mi=1, we have that with probability > 1−δ2
over {Mi}mi=1,

`(Dm|a)−max
a′∈A

`(Dm|a′) 6 B(δ2) := O

(√
c2`Q log

1

δ2
+ log

1

δ2
+Q log

amax

awmin

+mTεa

)
where

Q =
mTε2a

amin + awmin

, and c2` =

4

(√
amax

awmin
− 1− 1

2 log
(
awmin

amax

))
(√

awmin

amax
− 1

)2 .
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Proof. With probability > 1−mδ1, all Si satisfy Et (a− a)
2 6 ε2a. Assume this is true.

`(Dm|a)−max
a′∈A

`(Dm|a′)

6 `(Dm|a)− `(Dm|ã)

=

m∑
i=1

[∫ T

0

(log a− log ã)dNi(t)−
∫ T

0

(a− ã)dt

]

=

m∑
i=1


∫ T

0

log
(a
ã

)
dMi(t)︸ ︷︷ ︸

Ti1

+

∫ T

0

log
(a
ã

)
dΛi(t)︸ ︷︷ ︸

Ti2

−
∫ T

0

(a− ã)dt︸ ︷︷ ︸
Ti3


where Λi(t) := f(Si, t) is the compensator of Ni(t).

There are three terms under the sum. The first term Ti1 has zero expectation, and its variance is
Var(Ti1) = EM

[
T 2
i1

]
. Then

EM
[
T 2
i1

]
=

∫ T

0

log2

(
ã

a

)
dVi(t) =

∫ T

0

log2

(
ã

a

)
dΛi(t) = 4

∫ T

0

[
1

2
log

(
ã

a

)]2
dΛi(t).

We now apply the following claim:

Claim 3 ([24]). If g > −L for some constant L > 0, then

|g|n 6
n!

2
C2
L

1

2
[exp (g)− 1]

2
, for any n > 2,

where C2
L = 4(eL−1−L)

(e−L−1)2 .

Since 1
2 log

(
ã
a

)
> 1

2 log
(
awmin

amax

)
, we have[

1

2
log

(
ã

a

)]2
6 O(c2`)

(√
ã

a
− 1

)2

and thus

EM
[
T 2
i1

]
6 O(c2`)

∫ T

0

a

(√
ã

a
− 1

)2

dt = O(c2`)

∫ T

0

(√
ã−
√
a
)2
dt

6 O(c2`T )Et
(

ã− a√
ã+
√
a

)2

6 B1 := O

(
c2`Tε

2
a

amin + awmin

)
.

We have that the variance of
∑
i Ti1 is bounded bymB1 and that |

∑
i dM(t|Si)| 6 1 almost surely.

By martingale inequality in Lemma 8,

PrM

[∑
i

Ti1 > C1

(√
mB1 log

1

δ2
+ log

1

δ2

)]
6
δ2
2

for sufficiently large C1.

Since Ti2 is just the KL-divergence between a(Si, ·) and ã(Si, ·), we can apply the following claim.

Claim 4 (Eqn (7.6) in Lemm 5 in [25]). The KL-divergence between g(·) and g̃(·) is at most 4 +

2 log
[
maxt

∣∣∣ g(t)g̃(t)

∣∣∣] times their Hellinger distance 1
2

∫ T
0

(
√
g(t)−

√
g̃(t))dt.

17



By this claim,we have∫ T

0

log
(a
ã

)
dΛi(t) 6

(
4 + 2 log

[
max
t

∣∣∣∣∣
√
a(Si, t)
ã(Si, t)

∣∣∣∣∣
])∫ T

0

(√
a(Si, t)−

√
ã(Si, t)

)2
dt

6

(
4 + 2 log

amax

awmin

)∫ T

0

(
a(Si, t)− ã(Si, t)√
a(Si, t) +

√
ã(Si, t)

)2

dt

6 B2 :=

(
4 + 2 log

amax

awmin

)
Tε2a

amin + awmin

.

For Ti3, we have

|Ti3| 6
∫ T

0

|a(Si, t)− ã(Si, t)|dt 6 T
√
Et|a(Si, t)− ã(Si, t)|2 = Tεa =: B3.

Combining the bounds together, we have that `(Dm|a) − maxa′∈A `(Dm|a′) is bounded by

O
(√

B1 log 1
δ2

+ log 1
δ2

+m (B2 +B3)
)

.

B.4 MLE for Marked Counting Processes

Here we apply Theorem 11 to bound the empirical Hellinger distance between an approximate MLE
and the truth.

Theorem 13. Let D be the (d2, d∞)-covering dimension of G, and â be an ε`-MLE. There exist
constants C1, C2 > 1 such that for any {Si}mi=1, if z > C1 [D + ∆ + ε`] , then we have

PrM

[
Ĥ2(â, a) > z

]
6 exp [−z/C2] + PrM

[
`(Dm|a)−max

a′∈A
`(Dm|a′) > ∆

]
where PrM is with respect to the randomness in {Mi}mi=1.

Proof. We first verify the conditions of Theorem 11 is satisfied and then apply it to prove the claim.

Since g, g′ ∈ G are lower bounded by 1
2 log 1

2 , Claim 3 leads to

|g − g′|n 6 C ′1
n!

2

1

2
[exp (g)− exp (g′)]

2
, for any n > 2

for some constant C ′1 > 0. Since (Si, Ni(t)) are independent, and the counting process |dMi(t)| 6
C ′2 = 1 for all t and S, then

Vn(t|g − g′) =
∑
i

∫ t

0

|g − g′|ndVi,n

6 (C ′2)n−2
∑
i

∫ t

0

|g − g′|ndVi,2 = (C ′2)n−2
∑
i

∫ t

0

|g − g′|ndΛi

6 C ′1(C ′2)n−2
n!

2
d2t (g, g

′)

where Vi,n are the n-th order variation processes for Mi, and Λi is the compensator of Mi. This
verifies the first condition. For the second condition, by Claim 3 we have

|g(S, t)− g′(S, t)|2 6 C ′1
2!

2

1

2
[exp (g(S, t))− exp (g′(S, t))]2 6 C2

4d
2
∞,t(g, g

′)

where (C ′4)2 = C ′1
2!
2

1
2 . Then

|g(S, t)− g′(S, t)|n−2 = (|g(S, t)− g′(S, t)|2)(n−2)/2 6 [C ′4d∞,t(g, g
′)]n−2

18



and

Vn(t|g − g′) =
∑
i

∫ t

0

|g − g′|ndVi,n 6 (C ′2)n−2
∑
i

∫ t

0

|g − g′|2|g − g′|n−2dVi,2

6 [C ′2C
′
4d∞,t(g, g

′)]n−2
∑
i

∫ t

0

|g − g′|2dVi,2

6 [C ′2C
′
4d∞,t(g, g

′)]n−2
∑
i

∫ t

0

|g − g′|2dΛi

= 2d22,t(g, g
′)[C ′2C

′
4d∞,t(g, g

′)]n−2 6 2
n!

2
d22,t(g, g

′)[C ′2C
′
4d∞,t(g, g

′)]n−2.

We are now ready to apply Theorem 11. The argument is classic, see for example, in [26]. By
Lemma 3 and Lemma 2, it suffices to prove

PrM

[
M(T |gâ) > Ĥ2

(
â+ a

2
, a

)
−∆ and Ĥ

(
â+ a

2
, a

)
>
z

4

]
6 exp [−O(z)] .

Let b := a+b
2 for b ∈ A. The left hand side of the above inequality is bounded by

PrM

[
M(T |gb) > Ĥ2(b, a)−∆ and Ĥ(b, a) >

z

4
for some b

]
6

∞∑
j=1

PrM

[
M(T |gb) >

(
2j−1

z

4

)2
−∆ and Ĥ(b, a) > 2j

z

4
for some b

]
.

Denote the j-th term on the right hand side as Pj . Note that ga = 0 and M(T |gb) = M(T |gb− ga),
and Ĥ(b, a) = d22,T (gb, ga). So we can apply Theorem 11 on Pj . By setting z = Ω(max {D,∆})
and zj = O(2jz), we have Pj 6 exp [−zj ] and thus

∑∞
j=1 Pj 6 exp [−O(z)].

B.5 Sample Complexity of MLE for Learning Time Varying Coverage Functions

To apply Theorem 13 in our case, we need: 1) to bound the dimension of our hypothesis class; 2) to
transfer the Hellinger distance to `2 error to get the final bound.

Lemma 14. The (d2, d∞)-covering dimension of G is at most the number of random features W .

Proof. Note that d2,t and d∞,t are both nondecreasing with respect to t. So it suffices to show
the existence of a covering of size exponential in W with respect to both d2,T and d∞,T . In the
following, we only consider the time T , and write d2,T (d∞,T respectively) as d2 (d∞ respectively).
Note that

d22(ga′ , ga′′) = Ĥ2

(
a′ + a

2
,
a′′ + a

2

)
and d∞(ga′ , ga′′) = max

t,S

∣∣∣∣a′ + a

2a
− a′′ + a

2a

∣∣∣∣ =

∣∣∣∣a′ − a′′2a

∣∣∣∣ .
Then, the covering dimension of G is just the (d2, d∞)-covering dimension of A on which the
distances are (overloading notations):

d22(a′, a′′) := d22(ga′ , ga′′), d∞(a′, a′′) := d∞(ga′ , ga′′).

Then we can apply the same argument as Lemma 15 in [8] to show the dimension is at mostW . That
is, define a mapping fromw to aKw , and show that the `∞ distance of the former is approximately the
d2 distance of the latter, and the d∞ distance is bounded by the d2 distance (up to constant factors).

We will need to introduce the following definition and then prove a claim showing that the `∞
distance on w is approximately the d2 distance on aKw .

Definition 15. Define ξ = minw 6=0
w>Aw
w>w

, whereA = 1
2T

∑
S P(S)ΦΦ> and

Φ =

∫ T

0

φdt, and φ = [K(t− t(S, τ1)), . . . ,K(t− t(S, τW )]
>
.
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Claim 5. For an w,w′,√
ξ

2Tawmax

‖w −w′‖∞ 6 d2(aw, aw′) 6
Wκmax

2
√
awmin

‖w −w′‖∞.

Proof. (1) By definition, we have

d22(aw, aw′) =
1

2
ESEt

[√
w>φ−

√
w′>φ

]2
=

1

2
ESEt

[
w>φ−w′>φ√
w>φ+

√
w′>φ

]2
>

1

2awmax

ESEt
[
w>φ−w′>φ

]2
=

1

2awmaxT
(w −w′)>A (w −w′)

>
ξ

2awmaxT
‖w −w′‖22 >

ξ

2awmaxT
‖w −w′‖2∞.

(2) By definition we have

d22(aw, aw′) =
1

2
ESEt

[√
w>φ−

√
w′>φ

]2
=

1

2
ESEt

[
w>φ−w′>φ√
w>φ+

√
w′>φ

]2
6

1

4awmin

ESEt
[
w>φ−w′>φ

]2
6

1

4awmin

W 2κ2max‖w −w′‖2∞.

To bound the dimension, the key is to construct coverings of small sizes. By the above claim, the
d2 metric on A approximately corresponds to the `∞ metric on the set of weights. So based on
coverings for the weights with respect to the `∞ metric, we can construct coverings for A with
respect to the d2 metric. We then show that they are also coverings with respect to the d∞ metric.
The bound on the dimension then follows from the sizes of these coverings.

More precisely, given ε > 0 and a ball B ⊆ A with radius R > ε, we construct an ε-covering C as
follows. Define a mapping π : w 7→ aw, and define Bw = π−1(B). By Claim 5, the radius of Bw

is at most Rw =
√

2Tawmax

ξ R (with respect to the `∞ metric). Now consider finding an εw-covering

for Bw with respect to the `∞ metric, where εw =

(
Wκmax

2
√
awmin

)−1
ε. Since Bw ⊆ RW , by taking the

grid with length εw/2 on each dimension, we can get such a covering Cw with

|Cw| 6
(

4Rw

εw

)W
6

(
4

√
2Tawmax

ξ

Wκmax

2
√
awmin

R

ε

)W
.

Let C = π(Cw), and for any b ∈ B find b̃ as follows. Suppose wb ∈ Bw satisfies π(wb) = b and wb̃
is the nearest neighbor of wb in Cw, then we set b̃ = π(wb̃).

First, we argue that C is an ε-covering w.r.t. the d2 metric, i.e., d(b, b̃) < ε for any b ∈ B. It follows
from Claim 5:

d2(b, b̃) 6
Wκmax

2
√
awmin

‖wb −wb̃‖∞ <
Wκmax

2
√
awmin

εw = ε.
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Second, we argue that C is also an O(ε)-covering w.r.t. the d∞ metric, i.e., d∞(b, b̃) = O(ε) for any
b ∈ B.

d∞(π(wb), π(wb̃)) = max
t,S

∣∣∣∣∣∣
√
b+ a

2a
−

√
b̃+ a

2a

∣∣∣∣∣∣
= max

t,S

∣∣∣∣∣∣ |b− b̃|
√

2a
(√

b+ a+
√
b̃+ a

)
∣∣∣∣∣∣

6
maxt,S

∣∣(wb̃ −wb̃)>φ∣∣
2
√

2amin(awmin + amin)

6
Wκmax

2
√

2amin(awmin + amin)
‖wb −wb̃‖∞.

So the conditions in the definition of the dimension are satisfied with D = W , c1 =

4
√

2Tawmax

ξ
Wκmax

2
√
awmin

and c2 = Wκmax

2
√

2amin(awmin+amin)
, and thus the dimension of A is at most W .

Now, we can plug the lemmas into Theorem 13, and convert the Hellinger distance to the `2 distance
between f and our output function f̂ defined by â.

Theorem 16. Suppose â is an ε`-MLE, and f̂ is the corresponding function.
(i) Suppose there exists an ã ∈ A such that with probability at least 1−δ1 over S, Et (a′ − a)

2 6 ε2a.
Then for any 0 6 t 6 T , and ν > 0,

ES
[
f̂(S, t)− f(S, t)

]2
6 O

t2
νA2

max +
Amax

mT

[
W + log

1

ν
+ ε`

]
+Amax

εa +
ε2a
Amin

log

(
amax

awmin

)
+

√
c2`ε

2
a

AminmT
log

1

ν




where Amax = amax + awmax, Amin = amin + awmin, and c2` is defined in Lemma 12.
(ii) Consequently, if

W = O

(CZκmax)
2

(AmaxT

ε

)5/2

+

(
AmaxT log amax

awmin

εAmin

)5/4
 log

mAmaxT

εδ


and

m = O

(
AmaxT

ε

[
W + log

AmaxT

ε
+ ε`

]
+

1

Amin

√
awminT

log
AmaxT

ε

)
.

then with probability > 1− δ over {τi}Wi=1, for any 0 6 t 6 T ,

ES
[
f̂(S, t)− f(S, t)

]2
6 ε.

Proof. (i) By Theorem 13 and Lemma 12, there exists ΩS of probability at least 1−mδ1 so that for
any outcome of {Si}mi=1 in it, we have that with probability > 1− 2δ2,

Ĥ2(â, a) 6 z = O

(
D +B(δ2) + ε` + log

1

δ2

)
where D 6W by Lemma 14.

Since Ĥ2(â, a) 6 mT (amax + awmax) and EDm

[
Ĥ2(â, a)

]
= mTh2(â, a), we have

h2(â, a) 6 ε2(δ1, δ2) := (1−mδ1)(1− 2δ2)
z

mT
+ (mδ1 + 2δ2)(amax + awmax).
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Now we convert the Hellinger distance between the intensities to the `2 distance between the funci-
tion f and the output f̂ defined by â. For any 0 6 τ 6 T ,

ES
[
f̂(S, τ)− f(S, τ)

]2
6 ES

[∫ τ

0

|â(S, t)− a(S, t)| dt
]2

6 τES
∫ τ

0

[â(S, t)− a(S, t)]2 dt

6 τES
∫ τ

0

[(√
â(S, t)−

√
a(S, t)

)(√
â(S, t) +

√
a(S, t)

)]2
dt

6 2(amax + awmax)τES
∫ τ

0

[√
â(S, t)−

√
a(S, t)

]2
dt

6 4(amax + awmax)τ2h2(â, a) 6 4(amax + awmax)τ2ε2(δ1, δ2).

The first statement then follows from choosing δ1 = ν/m and δ2 = ν.

(ii) The second statement follows from the first statement and Lemma 2. More precisely, we check
each error terms and set the parameters as follows.

• To ensure t2A2
maxν = O(ε), let ν = O

(
ε

A2
maxT

2

)
.

• To ensure t2Amax

mT

[
W + log 1

ν + ε`
]

= O (ε), let

m = O

(
AmaxT

ε

[
W + log

AmaxT

ε
+ ε`

])
. (19)

• To ensure that ε2a = O(ε20), let σ =
√
ε0, and

W = O

((
CZκmax

ε0σ

)2

log
1

δ1δ

)
= O

(
(CZκmax)

2

ε
5/2
0

log
mAmaxT

εδ

)
.

• To ensure t2Amaxεa = O(ε), we need ε20 = O

((
ε

AmaxT

)2)
. To ensure

t2Amaxε
2
a

Amin
log
(
amax

awmin

)
= O(ε), we need ε20 = O

(
[Aminε]

/[
AmaxT

2 log
(
amax

awmin

)])
. Then

we need

W = O

(CZκmax)
2

(AmaxT

ε

)5/2

+

(
AmaxT log amax

awmin

εAmin

)5/4
 log

mAmaxT

εδ

 .

(20)

• To ensure t2Amax

√
c2`ε

2
a

AminmT
log 1

ν = O(ε), we need

m = O

(
c2`

AminT
log

AmaxT

ε

)
= O

(
1

Amin

√
awminT

log
AmaxT

ε

)
. (21)

The bound forW andm then follows from (20) and (19) (21) respectively. The kernel bandwidth σ is

chosen such that σ =
√
ε0 = O

(
min

{(
ε

AmaxT

)1/2
, [Aminε]

1/4
/[

AmaxT
2 log

(
amax

awmin

)]1/4})
.
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