CS 540 Introduction to Artificial Intelligence
Reinforcement Learning |

Yingyu Liang
University of Wisconsin-Madison
Dec 2, 2021

Based on slides by Fred Sala

Outline

* Introduction to reinforcement learning
— Basic concepts, mathematical formulation, MDPs, policies
* Valuing policies

— Value functions, Bellman equation, value iteration

Back to Our General Model

We have an agent interacting with the world

(&) >
Actions
< .
Observations

Agent

* Agent receives a reward based on state of the world

— Goal: maximize reward / utility (5$S)
— Note: data consists of actions & observations

* Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

oOe =
§Q§ Google DeepMind {9} AlphaGo Policy network Value network
. Challenge Match

8-15 March 2016

Py @l9) v (5)

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

s Rewards
0.04{
0.02
Input |
0.00{
-0.02|
Image convolutions [
~0.04|
Hidden layers PG & i <
[/i ~-004 -002 000 002 004
Game controller action values Timestep
Output
° QValues
—Action O
— Acticn)
— Ao 2
Acton 3
— Action 4
— ACHON 5

Mnih et al, “Human-level control through deep reinforcement learning”

02 04 06 08 10
Timestep

A. Nielsen

https://holmdk.github.io/

Examples: Video Game Agents

Dimensions

3D = Minecraft
n A

ViZDoom
DM Lab

ALE

Montezuma's
Revenge

Single-agent

.
Arena CTF \,;

Minecraft, Quake, StarCraft, and more!

Quake 111

StarCraft
Dota2

Number of

. agents
Multi-agent

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

i

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "

Building The Theoretical Model

Basic setup:) >
Actions
* Set of states, S < m
. Observations
e Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice a, € A. State changes to s;,; continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:

* State set S. Initial state s, Action set A
* State transition model: P(s;1|s;, a;)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

* Reward function: r(s,)
* Policy: 7T(8) 5 — A action to take at a particular state.

ao a a9
Sop —>S1 —=> 89 —> ...

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

f@i

r(s) = —0.04 for every
non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

0.1 0.1

1| START r(s) = —0.04 for every
non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

3 — — — +1 s
5 f f -~ 0.1 0.1
) f —— — —~—
r(s) = —0.04 for every

1 2 3 4 non-terminal state

Back to MDP Setup

The formal mathematical model:

* State set S. Initial state s, Action set A
* State transition model: P(s;1|s;, a;)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

How do we find
* Reward function: r(s,) / the best policy?

* Policy: 7T<S> 5 — A action to take at a particular state.

ao a a9
Sop —>S1 —=> 89 —> ...

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sg) = 2 P(sequence)U(sequence)

sequences
starting from s

¥

Called the value function (for =, s;)

Discounting Rewards

One issue: these are infinite series. Convergence?
e Solution
U(sg,51...)=7(s0) +77(s1) + 77 (Z'y (s¢)
t>0

* Discount factor y between 0 and 1
— Set according to how important present is VS future
— Note: has to be less than 1 for convergence

From Value to Policy

Now that V™ (s,) is defined what a should we take?

* First, set V*(s) to be expected utility for optimal policy from s
 What's the expected utility of an action?
— Specifically, action a in state s?

ZP(S"S,&)V*(S/)

. A BN

All the states we Transition probability Expected rewards

could go to

Obtaining the Optimal Policy

We know the expected utility of an action.

* So, to get the optimal policy, compute

7 (s) = argmax,, Z P(s's,a)V*(s")

o/ 7

All the states we Transition Expected & A S:\A
could go to probability rewards

Credit L. Lazbenik

Slight Problem...

Now we can get the optimal policy by doing

7 (s) = argmax, Z P(s's,a)V*(s")

S

* So we need to know V*(s).
— But it was defined in terms of the optimal policy!
— So we need some other approach to get V*(s).
— Need some other property of the value function!

Bellman Equation

Let’s walk over one step for the value function:

V*(s) =r(s) + va?XZP(S’]s, a)V*(s)

T\SY }

Current state Discounted expected
reward future rewards

TR

* Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find V*(s)?

* Why do we want it? Can use it to get the best policy

* Know: reward r(s), transition probability P(s’|s,a)

e Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Vigi(s) =1 (s) +7m3XZP(3/\SaG)W(3/>

Value lteration: Demo

Value iteration step 0.100

10"'TTTTTTTTYTYTTTTTTYTTTTT1"“1""1

R T N T Grid 1

O R R E R EE) 4

T T T S S T S S A T O 0.075

R R R E E E E E EE E E

T T T T T T T T S T S T

= T T T N T N S S R A A A S A |)

R E E R EE EEE EEEEEEEE! - 0.050

B R R R A E E EEEEEREE

T R T T R R R T N R T N N R R

T T T S S S T A S S S A T S

L + 2+ + 2 F P FF F T F R R b b - 0.025
O T R O A e A TN T T i e

I R E R R E R E I I I

T T T T T R R S S A T N 0.000

N R N A R T N N T N R T

T T T T T S T T S T S T S O

M b A B LR R AR N LA S LR R ER R

T T T S T S T S L _0.025

I R L E R E R E EEEEEEE

R N R R N N N N R N R N N

I R A A R E R E EEEEEEE

N N A I I R T N I T R N A L —0.050
EEEEEE R R R R R RN

N T R A A R N N N N A

T T T T R S S T T S S S A T S

I I I NN RN R NN R N N N N | -0.075

S T R T T S T S T S T T

I R R L E R E E E E E E
O‘MM—LMM

0 2 4 6 8 10 -0.100

Source: POMDPBGallery Julia Package

Summary

Reinforcement learning setup
Mathematica formulation: MDP

Value functions & the Bellman equation
Value iteration

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik,
Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

