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Outline

* Introduction to reinforcement learning
— Basic concepts, mathematical formulation, MDPs, policies
* Valuing policies

— Value functions, Bellman equation, value iteration



Back to Our General Model

We have an agent interacting with the world
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* Agent receives a reward based on state of the world

— Goal: maximize reward / utility (5$S)
— Note: data consists of actions & observations

* Compare to unsupervised learning and supervised learning



Examples: Gameplay Agents

AlphaZero:
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https://deepmind.com/research/alphago/



https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari
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Mnih et al, “Human-level control through deep reinforcement learning”
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https://holmdk.github.io/

Examples: Video Game Agents
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Minecraft, Quake, StarCraft, and more!

Quake 111

StarCraft
Dota2

Number of

. agents
Multi-agent

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"



Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

i

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "



Building The Theoretical Model

Basic setup: ) >
Actions
* Set of states, S < m
. Observations
e Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice a, € A. State changes to s;,; continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”



Markov Decision Process (MDP)

The formal mathematical model:

* State set S. Initial state s, Action set A
* State transition model: P(s;1|s;, a;)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

* Reward function: r(s,)
* Policy: 7T(8) 5 — A action to take at a particular state.

ao a a9
Sop —>S1 —=> 89 —> ...



Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein



Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

f@i

r(s) = —0.04 for every
non-terminal state




Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast
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Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast
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Back to MDP Setup

The formal mathematical model:

* State set S. Initial state s, Action set A
* State transition model: P(s;1|s;, a;)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

How do we find
* Reward function: r(s,) / the best policy?

* Policy: 7T<S> 5 — A action to take at a particular state.

ao a a9
Sop —>S1 —=> 89 —> ...



Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sg) = 2 P(sequence)U(sequence)

sequences
starting from s

¥

Called the value function (for =, s;)



Discounting Rewards

One issue: these are infinite series. Convergence?
e Solution
U(sg,51...)=7(s0) +77(s1) + 77 ( Z'y (s¢)
t>0

* Discount factor y between 0 and 1
— Set according to how important present is VS future
— Note: has to be less than 1 for convergence



From Value to Policy

Now that V™ (s,) is defined what a should we take?

* First, set V*(s) to be expected utility for optimal policy from s
 What's the expected utility of an action?
— Specifically, action a in state s?

ZP(S"S,&)V*(S/)

. A BN

All the states we Transition probability Expected rewards

could go to



Obtaining the Optimal Policy

We know the expected utility of an action.

* So, to get the optimal policy, compute

7 (s) = argmax,, Z P(s's,a)V*(s")

o/ 7

All the states we  Transition Expected & A S:\A
could go to probability rewards

Credit L. Lazbenik



Slight Problem...

Now we can get the optimal policy by doing

7 (s) = argmax, Z P(s's,a)V*(s")

S

* So we need to know V*(s).
— But it was defined in terms of the optimal policy!
— So we need some other approach to get V*(s).
— Need some other property of the value function!



Bellman Equation

Let’s walk over one step for the value function:

V*(s) =r(s) + va?XZP(S’]s, a)V*(s)

T\SY }

Current state Discounted expected
reward future rewards

TR

* Bellman: inventor of dynamic programming




Value Iteration

Q: how do we find V*(s)?

* Why do we want it? Can use it to get the best policy

* Know: reward r(s), transition probability P(s’|s,a)

e Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Vigi(s) =1 (s) +7m3XZP(3/\SaG)W(3/>



Value lteration: Demo

Value iteration step 0.100
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Source: POMDPBGallery Julia Package



Summary

Reinforcement learning setup
Mathematica formulation: MDP

Value functions & the Bellman equation
Value iteration
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