
Slides created by Sharon Li [modified by Yingyu Liang]

CS540 Introduction to Artificial Intelligence
Deep Learning II: Convolutional Neural Networks

Yingyu Liang
University of Wisconsin-Madison

Nov 4, 2021

Outline

• Brief review of convolutional computations

• Convolutional Neural Networks

• LeNet (first conv nets)

• AlexNet

• ResNet

Review: 2-D Convolution

Review: 2-D Convolution

Review: 2-D Convolution

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

Review: 2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

Padding

Padding adds rows/columns around input

0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0
Original input/output

Stride

• Stride is the #rows/#columns per slide

Strides of 3 and 2 for height and width

0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8
0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6

Output shape

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

StridePad

Kernel/filter size

Input size

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

*

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

*

Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

*

Review: 2-D Max Pooling

• Returns the maximal value in the
sliding window

max(0,1,3,4) = 4

Review: 2-D Max Pooling

• Returns the maximal value in the
sliding window

max(0,1,3,4) = 4

Convolutional Neural Networks

Evolution of neural net architectures

Evolution of neural net architectures

LeNet AlexNet

Inception
Net

ResNet
DenseNet

Handwritten Digit
Recognition

MNIST
• Centered and scaled
• 50,000 training data
• 10,000 test data
• 28 x 28 images
• 10 classes

Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

LeNet Architecture
(first conv nets)

!"#$%&'()*#+&$,-&#"'%'.,#//-%&$,(0,$0123&'(,"&10.'%(%0'4
by Y. LeCun, L. Bo.ou, Y. Bengio and P. Haffner

LeNet(variant) in Pytorch

 https://github.com/bollakarthikeya/LeNet-5-PyTorch/blob/master/lenet5_gpu.py

LeNet(variant) in Pytorch

Deng et al. 2009

AlexNet

AlexNet

• AlexNet won ImageNet
competition in 2012

AlexNet

• AlexNet won ImageNet
competition in 2012

• Deeper and bigger LeNet

AlexNet

• AlexNet won ImageNet
competition in 2012

• Deeper and bigger LeNet
• Paradigm shift for

computer vision

AlexNet

• AlexNet won ImageNet
competition in 2012

• Deeper and bigger LeNet
• Paradigm shift for

computer vision

Features learned
by a CNN

Softmax

AlexNet

• AlexNet won ImageNet
competition in 2012

• Deeper and bigger LeNet
• Paradigm shift for

computer vision

Features learned
by a CNN

Softmax

AlexNet Architecture

LeNetAlexNet

AlexNet Architecture

LeNetAlexNet

Larger pool size

AlexNet Architecture

LeNetAlexNet

Larger kernel size, stride
because of the increased

image size, and more
output channels.

Larger pool size

AlexNet Architecture

LeNet

AlexNet

AlexNet Architecture

LeNet

AlexNet

3 additional
convolutional layers

AlexNet Architecture

LeNet

AlexNet

More output channels.

3 additional
convolutional layers

AlexNet Architecture

LeNetAlexNet

AlexNet Architecture

LeNetAlexNet
1000 classes output

AlexNet Architecture

LeNetAlexNet

Increase hidden size
from 120 to 4096

1000 classes output

• Change activation function from sigmoid to ReLu
(no more vanishing gradient)

• Data augmentation

More Differences…

ImageNet Top-5 Classification Error (%)

Simple Idea: Add More Layers

• VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?

Simple Idea: Add More Layers

• VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?
• No! Some problems:

• Vanishing gradients: more layers more likely
• Instability: can’t guarantee we learn identity maps

Simple Idea: Add More Layers

• VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?

Reflected in training error:

• No! Some problems:
• Vanishing gradients: more layers more likely
• Instability: can’t guarantee we learn identity maps

Depth Issues & Learning Identity

• Why would more layers result in worse performance

Depth Issues & Learning Identity

• Why would more layers result in worse performance

• Same architecture, etc.

Depth Issues & Learning Identity

• Why would more layers result in worse performance

• Same architecture, etc.

Depth Issues & Learning Identity

• Why would more layers result in worse performance

• Same architecture, etc.
• If the A can learn f, then

so can B, as long as top
layers learn identity

Depth Issues & Learning Identity

• Why would more layers result in worse performance

• Same architecture, etc.
Q: can we
learn
identity
here?

• If the A can learn f, then
so can B, as long as top
layers learn identity

Depth Issues & Learning Identity

• Why would more layers result in worse performance

• Same architecture, etc.

Idea: if layers can learn identity, can’t get worse.

Q: can we
learn
identity
here?

• If the A can learn f, then
so can B, as long as top
layers learn identity

Residual Connections

• Idea: identity might be hard to learn, but zero is easy!

Residual Connections

• Idea: identity might be hard to learn, but zero is easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

Residual Connections

• Idea: identity might be hard to learn, but zero is easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

Residual Connections

• Idea: identity might be hard to learn, but zero is easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

Residual Connections

• Idea: identity might be hard to learn, but zero is easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

Residual Connections

• Idea: identity might be hard to learn, but zero is easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

Residual Connections

• Idea: identity might be hard to learn, but zero is easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

Residual Connections

• Idea: identity might be hard to learn, but zero is easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

Left: Conventional layer blocks

Residual Connections

• Idea: identity might be hard to learn, but zero is easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

Left: Conventional layer blocks
Right: Residual layer blocks

Residual Connections

• Idea: identity might be hard to learn, but zero is easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

Left: Conventional layer blocks
Right: Residual layer blocks

To learn identity f(x) = x, layers now
need to learn f(x) = 0 ➔ easier

ResNet Architecture

• Idea: Residual (skip) connections help make learning easier

ResNet Architecture

• Idea: Residual (skip) connections help make learning easier

• Example architecture:

ResNet Architecture

• Idea: Residual (skip) connections help make learning easier

• Example architecture:

ResNet Architecture

• Idea: Residual (skip) connections help make learning easier

• Example architecture:
• Note: residual connections

• Every two layers for ResNet34

ResNet Architecture

• Idea: Residual (skip) connections help make learning easier

• Example architecture:
• Note: residual connections

• Every two layers for ResNet34

• Vastly better performance
• No additional parameters!
• Records on many benchmarks

What we’ve learned today

What we’ve learned today

• Brief review of convolutional computations

What we’ve learned today

• Brief review of convolutional computations

• Convolutional Neural Networks

What we’ve learned today

• Brief review of convolutional computations

• Convolutional Neural Networks

• LeNet (first conv nets)

What we’ve learned today

• Brief review of convolutional computations

• Convolutional Neural Networks

• LeNet (first conv nets)

• AlexNet

What we’ve learned today

• Brief review of convolutional computations

• Convolutional Neural Networks

• LeNet (first conv nets)

• AlexNet

• ResNet

Acknowledgement:
Some of the slides in these lectures have been adapted/borrowed from materials developed by Yin Li (https://happyharrycn.github.io/CS540-Fall20/schedule/), Alex
Smola and Mu Li:
https://courses.d2l.ai/berkeley-stat-157/index.html

https://happyharrycn.github.io/CS540-Fall20/schedule/
https://courses.d2l.ai/berkeley-stat-157/index.html

