

CS540 Introduction to Artificial Intelligence Deep Learning II: Convolutional Neural Networks Yingyu Liang University of Wisconsin-Madison

Nov 4, 2021

Slides created by Sharon Li [modified by Yingyu Liang]

Outline

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)
 - AlexNet
 - ResNet

*

Input

Kernel

0	1	2
3	4	5
6	7	8

Output

19	25
37	43

*

Kernel

0	1	2
3	4	5
6	7	8

 $0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$, $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25$, $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37$, $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$

Output

19	25
37	43

*

Kernel

0	1	2
3	4	5
6	7	8

 $0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$, $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25$, $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37$, $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$

(vdumoulin@ Github)

Padding

Padding adds rows/columns around input Input Kernel : 0 0 1 0 1 0 1 * : 0 Original input/output $0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0$

Output

0	3	8	4
9	19	25	10
21	37	43	16
	7	8	0

Stride

Stride is the #rows/#columns per slide

Strides of 3 and 2 for height and width

Input

Kernel

 $0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$ $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$

Output shape

 $[(n_h - k_h + p_h + s_h)/s_h] \times [(n_w - k_w + p_w + s_w)/s_w]$

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Input

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Input

Kernel

*

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Input

Kernel

Input

*

*

Have a kernel for each channel, and then sum results over

Kernel

+

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Have a kernel for each channel, and then sum results over

Kernel

╋

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Review: 2-D Max Pooling

 Returns the maximal value in the sliding window

Input

	4
	7

max(0,1,3,4) = 4

Output

Review: 2-D Max Pooling

 Returns the maximal value in the sliding window

Input

	4
	7

max(0,1,3,4) = 4

Output

Convolutional Neural Networks

Evolution of neural net architectures

Evolution of neural net architectures

Handwritten Digit Recognition

Philip Marlow PORTLAND OR 970 638 Hollywood Blia # 615 Los Angeles, CA 15479 2019 EM3 L Dave Fennice vletter, in 509 lasiade Ave, Suite H Hood River, OR 97031 alleligen and and and and any first of a star for a star and the star of the s 9703i206080 CARROLL O'CONNOR **BUSINESS ACCOUNT** % NANAS, STERN, BIERS AND CO. march 10 19 9454 WILSHIRE BLVD., STE. 405 273-2501 BEVERLY HILLS, CALIF. 90212 PAY TO THE WILSHIRE-DOHENY OFFICE WELLS FARGO BANK 201007 9101 WILSHIRE BOULEVARD BEVERLY HILLS, CALIFORNIA 90211 "000050000." 0635 111875 NUMBER OF STREET, STRE DELUTE CHECK PRINTERS - 1H

MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28 x 28 images
- 10 classes

0000000000000 1 222222222222 3333333333 66666666666 777777777 888888888888 999999999999999

Ô

0 103

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998 Gradient-based learning applied to document recognition

Ô

0 103

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998 Gradient-based learning applied to document recognition

LeNet Architecture (first conv nets)

Gradient-based learning applied to document recognition, by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner


```
def __init__(self):
super(LeNet5, self).__init__()
# Convolution (In LeNet-5, 32x32 images are given as input. Hence padding of 2 is done below)
 self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)
# Max-pooling
 self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
# Convolution
 self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)
# Max-pooling
self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
# Fully connected layer
 self.fc1 = torch.nn.Linear(16*5*5, 120) # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (column
 self.fc2 = torch.nn.Linear(120, 84)
                                          # convert matrix with 120 features to a matrix of 84 features (columns)
self.fc3 = torch.nn.Linear(84, 10) # convert matrix with 84 features to a matrix of 10 features (columns)
```

https://github.com/bollakarthikeya/LeNet-5-PyTorch/blob/master/lenet5_gpu.py

def forward(self, x):

- # convolve, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.conv1(x))
- # max-pooling with 2x2 grid
- $x = self.max_pool_1(x)$
- # convolve, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.conv2(x))
- # max-pooling with 2x2 grid
- $x = self.max_pool_2(x)$
- # first flatten 'max_pool_2_out' to contain 16*5*5 columns
- # read through https://stackoverflow.com/a/42482819/7551231
- x = x.view(-1, 16*5*5)
- # FC-1, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.fc1(x))
- # FC-2, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.fc2(x))
- # FC-3
- x = self.fc3(x)

return x

LeNet(variant) in Pytorch

Deng et al. 2009

 AlexNet won ImageNet competition in 2012

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

Softmax

Features learned by a CNN
AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

Larger kernel size, stride because of the increased image size, and more output channels.

1000 classes output

1000 classes output

Increase hidden size from 120 to 4096

More Differences...

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Data augmentation

ImageNet Top-5 Classification Error (%)

Simple Idea: Add More Layers

VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?

Simple Idea: Add More Layers

- VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?
- No! Some problems:
 - Vanishing gradients: more layers more likely
 - Instability: can't guarantee we learn identity maps

Simple Idea: Add More Layers

- VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?
- No! Some problems:

 - Vanishing gradients: more layers more likely Instability: can't guarantee we learn identity maps

• Why would more layers result in worse performance

- Why would more layers result in worse performance
 - Same architecture, etc.

- Why would more layers result in worse performance
 - Same architecture, etc.

- Why would more layers result in worse performance
 - Same architecture, etc.
 - If the A can learn f, then so can B, as long as top layers learn identity

- Why would more layers result in worse performance
 - Same architecture, etc.
 - If the A can learn f, then so can B, as long as top layers learn identity

- Why would more layers result in worse performance
 - Same architecture, etc.
 - If the A can learn f, then so can B, as long as top layers learn identity

Network

Idea: if layers can learn identity, can't get worse.

• Idea: identity might be hard to learn, but zero is easy!

- Idea: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

- Idea: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

- Idea: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

- Idea: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

- Idea: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

- Idea: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

- Idea: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

d to learn, but zero is easy! duces zero for output identity to learning zero:

Left: Conventional layer blocks

- Idea: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

d to learn, but zero is easy! duces zero for output identity to learning zero:

> Left: Conventional layer blocks Right: Residual layer blocks

- Idea: identity might be hard to learn, but zero is easy!
 - Make all the weights tiny, produces zero for output
 - Can easily transform learning identity to learning zero:

Left: Conventional layer blocks **Right:** Residual layer blocks

To learn identity f(x) = x, layers now need to learn $f(x) = 0 \rightarrow easier$

Idea: Residual (skip) connections help make learning easier

- - Example architecture:

Idea: Residual (skip) connections help make learning easier

- - Example architecture:

Idea: Residual (skip) connections help make learning easier

- - Example architecture:
 - Note: residual connections
 - Every two layers for ResNet34

Idea: Residual (skip) connections help make learning easier

- - Example architecture:
 - Note: residual connections
 - Every two layers for ResNet34
 - Vastly better performance
 - No additional parameters!
 - Records on many benchmarks

Idea: Residual (skip) connections help make learning easier

Brief review of convolutional computations

- Brief review of convolutional computations
- Convolutional Neural Networks

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)
 - AlexNet

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)
 - AlexNet
 - ResNet

Acknowledgement:

Some of the slides in these lectures have been adapted/borrowed from materials developed by Yin Li (https://happyharrycn.github.io/CS540-Fall20/schedule/), Alex Smola and Mu Li:

https://courses.d2l.ai/berkeley-stat-157/index.html

