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0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.
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(vdumoulin@ Github)
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Padding

Padding adds rows/columns around input

0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0
Original input/output



Stride

• Stride is the #rows/#columns per slide

Strides of 3 and 2 for height and width

0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8
0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6



Output shape

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

StridePad

Kernel/filter size

Input size



Review: Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels 
• Have a kernel for each channel, and then sum results over 

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56
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Review: 2-D Max Pooling

• Returns the maximal value in the 
sliding window

max(0,1,3,4) = 4



Review: 2-D Max Pooling

• Returns the maximal value in the 
sliding window

max(0,1,3,4) = 4



Convolutional Neural Networks



Evolution of neural net architectures



Evolution of neural net architectures

LeNet AlexNet

Inception 
Net

ResNet
DenseNet



Handwritten Digit  
Recognition



MNIST
• Centered and scaled  
• 50,000 training data 
• 10,000 test data 
• 28 x 28 images 
• 10 classes



Y. LeCun, L. 
Bottou, Y. Bengio, 
P. Haffner, 1998 
Gradient-based 
learning applied to 
document 
recognition
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LeNet Architecture 
(first conv nets)

!"#$%&'()*#+&$,-&#"'%'.,#//-%&$,(0,$0123&'(,"&10.'%(%0'4 
by Y. LeCun, L. Bo.ou, Y. Bengio and P. Haffner



LeNet(variant) in Pytorch

 https://github.com/bollakarthikeya/LeNet-5-PyTorch/blob/master/lenet5_gpu.py



LeNet(variant) in Pytorch



Deng et al. 2009
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• AlexNet won ImageNet 
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AlexNet

• AlexNet won ImageNet 
competition in 2012

• Deeper and bigger LeNet 
• Paradigm shift for 

computer vision

Features learned 
by a CNN

Softmax 



AlexNet Architecture 

LeNetAlexNet
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LeNetAlexNet

Larger pool size



AlexNet Architecture 

LeNetAlexNet

Larger kernel size, stride 
because of the increased 

image size, and more 
output channels.

Larger pool size
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LeNet

AlexNet

3 additional 
convolutional  layers



AlexNet Architecture 

LeNet

AlexNet

More output channels.

3 additional 
convolutional  layers



AlexNet Architecture 

LeNetAlexNet



AlexNet Architecture 

LeNetAlexNet
1000 classes output



AlexNet Architecture 

LeNetAlexNet

Increase hidden size  
from 120 to 4096

1000 classes output



• Change activation function from sigmoid to ReLu 
(no more vanishing gradient) 

• Data augmentation

More Differences…



ImageNet Top-5 Classification Error (%)



Simple Idea: Add More Layers  

• VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient? 
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Simple Idea: Add More Layers  

• VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient? 

Reflected in training error:

• No! Some problems:  
• Vanishing gradients: more layers more likely 
• Instability: can’t guarantee we learn identity maps
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Depth Issues & Learning Identity

• Why would more layers result in worse performance 

• Same architecture, etc.

Idea: if layers can learn identity, can’t get worse.

Q: can we 
learn 
identity 
here? 

• If the A can learn f, then 
so can B, as long as top 
layers learn identity
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Residual Connections

• Idea: identity might be hard to learn, but zero is easy!
• Make all the weights tiny, produces zero for output 
• Can easily transform learning identity to learning zero:

Left: Conventional layer blocks
Right: Residual layer blocks

To learn identity f(x) = x, layers now 
need to learn f(x) = 0 ➔ easier
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ResNet Architecture

• Idea: Residual (skip) connections help make learning easier 

• Example architecture:
• Note: residual connections 

• Every two layers for ResNet34

• Vastly better performance 
• No additional parameters! 
• Records on many benchmarks
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