CS540 Introduction to Artificial Intelligence Deep Learning II: Convolutional Neural Networks
 Yingyu Liang
 University of Wisconsin-Madison

Nov 4, 2021

Outline

- Brief review of convolutional computations
- Convolutional Neural Networks
- LeNet (first conv nets)
- AlexNet
- ResNet

Review: 2-D Convolution

Review: 2-D Convolution

Input Kernel Output

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$=$	19	25	
:---	:---				
37	43				

Review: 2-D Convolution

Input

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$=$	19	25	
:---	:---				
37	43				

$$
\begin{aligned}
& 0 \times 0+1 \times 1+3 \times 2+4 \times 3=19 \\
& 1 \times 0+2 \times 1+4 \times 2+5 \times 3=25 \\
& 3 \times 0+4 \times 1+6 \times 2+7 \times 3=37 \\
& 4 \times 0+5 \times 1+7 \times 2+8 \times 3=43
\end{aligned}
$$

Review: 2-D Convolution

Input		Kernel	
0 1 2 3 4 5 6 7 8$*$0 1 2 3$=$19 25 37 43			

$$
\begin{aligned}
& 0 \times 0+1 \times 1+3 \times 2+4 \times 3=19 \\
& 1 \times 0+2 \times 1+4 \times 2+5 \times 3=25 \\
& 3 \times 0+4 \times 1+6 \times 2+7 \times 3=37 \\
& 4 \times 0+5 \times 1+7 \times 2+8 \times 3=43
\end{aligned}
$$

Padding

Padding adds rows/columns around input

Input
Kernel

Output

Original input/output
$0 \times 0+0 \times 1+0 \times 2+0 \times 3=0$

Stride

- Stride is the \#rows/\#columns per slide

Strides of 3 and 2 for height and width
Input
Kernel
Output

$$
\begin{aligned}
& 0 \times 0+0 \times 1+1 \times 2+2 \times 3=8 \\
& 0 \times 0+6 \times 1+0 \times 2+0 \times 3=6
\end{aligned}
$$

Output shape

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input

0	1	2	2
3	4	5	-
6	7	8	

=

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel
Input
Kernel

		2	2
0	1	2	
3	4	5	
6	7	8	

$*$| | $\|l\|$
 0 1
 2 3 |
| :--- | :--- |

1	2	3
4	5	6
7	8	9

$*$| 1 | 2 |
| :---: | :---: |
| 3 | 4 |
| | t |

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel
Input
Kernel

$*$| | |
| :--- | :--- |
| 0 | 1 |
| 2 | 3 |

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel
Input
Kernel
Output

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel
Input
Kernel
Output
$(1 \times 1+2 \times 2+4 \times 3+5 \times 4)$
$+(0 \times 0+1 \times 1+3 \times 2+4 \times 3)$
$=56$

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Review: 2-D Max Pooling

- Returns the maximal value in the sliding window

Input
Output

0	1	2
3	4	5
6	7	8

4	5
7	8

$$
\max (0,1,3,4)=4
$$

Review: 2-D Max Pooling

- Returns the maximal value in the sliding window

Input
Output

0	1	2
3	4	5
6	7	8

4	5
7	8

$$
\max (0,1,3,4)=4
$$

Convolutional Neural Networks

Evolution of neural net architectures

Evolution of neural net architectures

Philip Marlowe portuanp gre 970 6381 Hollywood Bled * 615 los Angels, $C A$ 合

$$
\begin{aligned}
& \text { Dave Fennuid } \\
& \text { better, in e } \\
& 509 \text { Cascade Are, Suite H } \\
& \text { Hood Ricer, OR } 97031
\end{aligned}
$$

Handwritten Digit Recognition

MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28×28 images
- 10 classes

000000000000 111111111111

22222222222
33333333 333
444444444444
555555555555
666666666666
777777777777
888888888888
999999999999

ATET LeNet 5 RESEARCH $^{\text {LIN }}$ answer: 0

ATET LeNet 5 RESEARCH $^{\text {LIN }}$ answer: 0

LeNet Architecture (first conv nets)

LeNet(variant) in Pytorch

\qquad init \qquad (self): super(LeNet5, self).__init__()
\# Convolution (In LeNet-5, 32×32 images are given as input. Hence padding of 2 is done below) self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)
\# Max-pooling
self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
\# Convolution
self.conv2 = torch.nn. Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)
\# Max-pooling
self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
\# Fully connected layer
self.fc1 = torch.nn. Linear $(16 * 5 * 5,120) \quad \#$ convert matrix with $16 * 5 * 5(=400)$ features to a matrix of 120 features (column
self.fc2 $=$ torch.nn. Linear $(120,84) \quad$ \# convert matrix with 120 features to a matrix of 84 features (columns)
self.fc3 $=$ torch.nn. Linear $(84,10)$
\# convert matrix with 84 features to a matrix of 10 features (columns)
https://github.com/bollakarthikeya/LeNet-5-PyTorch/blob/master/lenet5_gpu.py
def forward(self, x):
\# convolve, then perform ReLU non-linearity
$x=$ torch.nn.functional. relu(self.conv1(x))
\# max-pooling with 2×2 grid
$\mathrm{x}=$ self.max_pool_1(x)
\# convolve, then perform ReLU non-linearity
$x=$ torch.nn.functional. relu(self.conv2(x))
\# max-pooling with 2×2 grid
$x=$ self.max_pool_2(x)
\# first flatten 'max_pool_2_out' to contain $16 * 5 * 5$ columns
\# read through https://stackoverflow.com/a/42482819/7551231
$\mathrm{x}=\mathrm{x} . \operatorname{view}(-1,16 * 5 * 5)$
\# FC-1, then perform ReLU non-linearity
$x=$ torch.nn.functional.relu(self.fc1(x))
\# FC-2, then perform ReLU non-linearity

LeNet(variant) in Pytorch
$x=$ torch.nn.functional. relu(self.fc2(x))
\# FC-3
$x=s e l f . f c 3(x)$
return x

convolution
convolution

Deng et al. 2009

AlexNet

AlexNet

- AlexNet won ImageNet competition in 2012

AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet

AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

AlexNet

- AlexNet won ImageNet competition in 2012

AlexNet Architecture

More Differences...

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Data augmentation

Simple Idea: Add More Layers

- VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?

Simple Idea: Add More Layers

- VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?
- No! Some problems:
- Vanishing gradients: more layers more likely
- Instability: can’t guarantee we learn identity maps

Simple Idea: Add More Layers

- VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?
- No! Some problems:
- Vanishing gradients: more layers more likely
- Instability: can't guarantee we learn identity maps

Reflected in training error:

He et al: "Deep Residual Learning for Image Recognition"

Depth Issues \& Learning Identity

- Why would more layers result in worse performance

Depth Issues \& Learning Identity

- Why would more layers result in worse performance
- Same architecture, etc.

Depth Issues \& Learning Identity

- Why would more layers result in worse performance
- Same architecture, etc.

Depth Issues \& Learning Identity

- Why would more layers result in worse performance
- Same architecture, etc.
- If the A can learn f, then so can B, as long as top layers learn identity

Depth Issues \& Learning Identity

- Why would more layers result in worse performance
- Same architecture, etc.
- If the A can learn f , then so can B, as long as top layers learn identity

Depth Issues \& Learning Identity

- Why would more layers result in worse performance
- Same architecture, etc.
- If the A can learn f , then so can B, as long as top layers learn identity

Idea: if layers can learn identity, can't get worse.

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!
- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!
- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!
- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!
- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!
- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!
- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!
- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Left: Conventional layer blocks

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!
- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Left: Conventional layer blocks Right: Residual layer blocks

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!
- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Left: Conventional layer blocks Right: Residual layer blocks

To learn identity $f(x)=x$, layers now need to learn $f(x)=0 \rightarrow$ easier

ResNet Architecture

- Idea: Residual (skip) connections help make learning easier

ResNet Architecture

- Idea: Residual (skip) connections help make learning easier
- Example architecture:

ResNet Architecture

- Idea: Residual (skip) connections help make learning easier
- Example architecture:

34-layer plain

34-layer residual

He et al: "Deep Residual Learning for Image Recognition"

ResNet Architecture

- Idea: Residual (skip) connections help make learning easier
- Example architecture:
- Note: residual connections
- Every two layers for ResNet34

34-layer plain

34-layer residual

He et al: "Deep Residual Learning for Image Recognition"

ResNet Architecture

- Idea: Residual (skip) connections help make learning easier
- Example architecture:
- Note: residual connections
- Every two layers for ResNet34
- Vastly better performance
- No additional parameters!
- Records on many benchmarks

34-layer plain

34-layer residual

He et al: "Deep Residual Learning for Image Recognition"

What we've learned today

What we've learned today

- Brief review of convolutional computations

What we've learned today

- Brief review of convolutional computations
- Convolutional Neural Networks

What we've learned today

- Brief review of convolutional computations
- Convolutional Neural Networks
- LeNet (first conv nets)

What we've learned today

- Brief review of convolutional computations
- Convolutional Neural Networks
- LeNet (first conv nets)
- AlexNet

What we've learned today

- Brief review of convolutional computations
- Convolutional Neural Networks
- LeNet (first conv nets)
- AlexNet
- ResNet

Acknowledgement:

Some of the slides in these lectures have been adapted/borrowed from materials developed by Yin Li (https://happyharrycn.github.io/CS540-Fall20/schedule/), Alex Smola and MuLi :
https://courses.d2l.ai/berkeley-stat-157/index.html

