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Today’s outline
• Single-layer Perceptron Continued


• Multi-layer Perceptron 


• Single output


• Multiple output 


• How to train neural networks


• Gradient descent 



Step Function activation

Step function is discontinuous, which 
cannot be used for gradient descent 

σ(x) = {1 if x > 0
0 otherwise

The standard perceptron uses the step function activation. There are other variants.  



Sigmoid/Logistic Activation

Map input into [0, 1], a soft version of 

sigmoid(x) =
1

1 + exp(−x)

σ(x) = {1 if x > 0
0 otherwise

The sigmoid or logistic activation function is typically used in the output layer of the network for classification. Will learn more later. 


The sigmoid perceptron with the sigmoid activation is just the model for logistic regression. (Note that logistic regression is actually for classification, not for regression!)



Logistic regression
x ∈ ℝd, y = {−1, + 1}

p(y = 1 |x) = σ(wTx) =
1

1 + exp(−wTx)

p(y = − 1 |x) = 1 − σ(wTx) =
1

1 + exp(wTx)



Logistic regression

Training: maximize likelihood estimate (on the conditional 
probability)

max
w ∑

i

log
1

1 + exp(−yiwTxi)

Given: {(xi, yi)}n
i=1

Training: MLE 

Optimization: typically use SGD or minibatch SGD




Class +1

Class -1

Logistic regression
Given: {(xi, yi)}n

i=1

Training: maximize likelihood estimate (on the conditional 
probability)
Training: maximize likelihood estimate (on the conditional 
probability)

When training data is linearly 
separable, many solutions

Issue: when the training data is linearly separable with some margin, there exist many solutions. We would like to impose some preference



Logistic regression

Training: maximum A posteriori (MAP)

min
w ∑

i

− log
1

1 + exp(−yiwTxi)
+

λ
2

∥w∥2
2

Given: {(xi, yi)}n
i=1

• Convex optimization

• Solve via (stochastic) gradient descent

We can impose the l2 regularization, ie, we prefer the solution with a small norm weight vector. 


Comments (not required to understand or derive):

1. This regularized training objective can be derived using MAP, where the prior is a Gaussian distribution of w.

2. The small norm weight vector turns out to give large margin between the two classes. 



Tanh Activation

Map inputs into (-1, 1)

tanh(x) =
1 − exp(−2x)
1 + exp(−2x)

Another activation: Tanh. Closely related to the sigmoid function



ReLU Activation

ReLU: rectified linear unit (commonly used in modern 
neural networks) ReLU(x) = max(x,0)

A commonly used activation: ReLU. 


Simple, efficient to compute. The gradient is also simple: 0 for negative inputs, and 1 for nonnegative inputs. (Strictly speaking it doesn’t have gradient at x=0 but 
conventionally we just define that to be 1)



Quiz Break

Which one of the following is valid activation function

A) Step func+on
B) Sigmoid func+on 
C) ReLU func+on 
D) all of above



Quiz Break

Which one of the following is valid activation function

a)Step func+on
b) Sigmoid func+on 
C) ReLU func+on 
D) all of above



Let ! = !!
!" . Which of the following functions is NOT an element-wise 

operation that can be used as an activation function?
A  f(!) = !!

!"
B  f(!) = max	(0, !!)

max	(0, !")
C  f(!) = exp	(!!)

exp	(!")
D  f(!) = exp	(!! + !")

exp	(!")

Quiz Break
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Multilayer Perceptron



The limited power of a single neuron

The perceptron cannot learn an XOR function 
(neurons can only generate linear separators)

?

x1 = 1,x2 = 1,y = 0

x1 = 1,x2 = 0,y = 1

x1 = 0,x2 = 1,y = 1

x1 = 0,x2 = 0,y = 0

XOR(x1,x2 )=(x1∧¬x2)∨(¬x1∧x2)

Recall the limitation of the standard perceptron: linear decision boundary. Thus cannot represent XOR which has a nonlinear decision boundary. 


However, we know that XOR (actually any logic functions) can be represented using compositions of the standard logic functions AND OR NOT, and the standard logic 
functions can be represented using perceptrons. Therefore, we can use compositions of the perceptron to represent any logic functions including XOR. 


This motivates to connect perceptrons/neurons into networks to get more powerful models. 



The limited power of a single neuron
XOR problem

?

If one can represent AND, OR, NOT,  
one can represent any logic circuit (including XOR),  
by connecting them

XOR(x1,x2 )=(x1∧¬x2)∨(¬x1∧x2)



courses.d2l.ai/berkeley-stat-157

Learning XOR 

1 2

43



Multi-layer perceptron: Example

Hidden layer 
Input 3 neurons

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

x1

x2

•Standard way to connect Perceptrons

•Example: 1 hidden layer, 1 output layer, depth = 2

x ∈ ℝd

w(1)
11

w(1)
12



Multi-layer perceptron: Example

Hidden layer 
Input 3 neurons

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

x1

x2

•Standard way to connect Perceptrons

•Example: 1 hidden layer, 1 output layer, depth = 2

x ∈ ℝd
w(1)

21

w(1)
22



Multi-layer perceptron: Example

Hidden layer 
Input 3 neurons

x1

x2

•Standard way to connect Perceptrons

•Example: 1 hidden layer, 1 output layer, depth = 2

x ∈ ℝd

w(1)
31

w(1)
32 h3 = σ(

d

∑
i=1

xiw(1)
3i + b3)



Multi-layer perceptron: Example

Hidden layer 
Input m=3 neurons

x1

x2

•Standard way to connect Perceptrons

•Example: 1 hidden layer, 1 output layer, depth = 2

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Multiple neurons in the hidden layer, each is a perceptron. 



Multi-layer perceptron: Example

Hidden layer 
Input m=3 neurons

x1

x2

•Standard way to connect Perceptrons

•Example: 1 hidden layer, 1 output layer, depth = 2

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Output 
w(2)

1

w(2)
2

w(2)
3

Now view the output of the hidden neurons as an input vector, and build another neuron on top of it (the output layer).



Multi-layer perceptron: Example

Hidden layer 
Input m=3 neurons

x1

x2

•Standard way to connect Perceptrons

•Example: 1 hidden layer, 1 output layer, depth = 2

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Output 
w(2)

1

̂y = σ(
m

∑
i=1

hiw(2)
i + b′ )

w(2)
2

w(2)
3

Sigmoid activation

For binary classification: we use sigmoid activation function in the output neuron.

For regression: just no activation function


For multiple classes: we use softmax (see later slides)



Hidden layer 
Input 

m neurons

• Input 
• Hidden 
• Intermediate output   

x ∈ ℝd

W(1) ∈ ℝm×d, b ∈ ℝm

Multi-layer perceptron: Matrix Notation

h = σ(W(1)x + b)

h ∈ ℝm

For simplicity, we can use matrix notation to describe neural networks.


Stack the weight vectors of the neurons in the hidden layer as the rows of a weight matrix W^{(1)}, stack their bias terms into a vector. Let h denote the vector of the 
outputs of these neurons. Then we can write the hidden layer compactly as h=\sigma(W^{(1)}x + b). Note that here \sigma is applied to each element of the linear 
transformation vector W^{(1)}x + b and get h. 



Hidden layer 
Input 

m neurons

Output 

Why do we need an a 
nonlinear activation?

Multi-layer perceptron



Hidden layer 
Input 

m neurons

Output 

Why do we need an a 
nonlinear activation?

h = Wx + b
f = wT

2h + b2

hence f = w⊤
2 Wx + b′ 

Multi-layer perceptron

If we don’t have nonlinear activation then the whole network is still a linear function, which is not desired. 



Neural network for k-way classification

Hidden layer 
Input m=3 neurons

x1

x2

•K outputs in the final layer

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Output 
w(2)

11

w(2)
12

w(2)
13

f1 =
m

∑
i=1

hiw(2)
1i + b′ 1

No 
activation function 
applied in output 

layer

For multi-class classification, we can use the softmax operation. 


First compute the linear transformation, denoted as f_i 



Neural network for k-way classification

Hidden layer 
Input m=3 neurons

x1

x2

•K outputs units in the final layer

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Output 

w(2)
k1

w(2)
k2

w(2)
k3

fk =
m

∑
i=1

hiw(2)
ki + b′ k

…

Multi-class classification (e.g., ImageNet with k=1000)



Softmax

Hidden layer 
Input m=3 neurons

x1

x2

Turns outputs f into probabilities (sum up to 1 across k classes)

x ∈ ℝd

Output 

fk

…
f1

p(y |x) = softmax( f )

=
exp fy(x)

∑k
i exp fi(x)

Then squash the vector f into a probabilistic vector over the K classes: first apply the exponential function and then normalize. 


The elements f_i are nonnegative and sum up to 1: can be viewed as a probabilistic distribution over the K classes. Typically used to represent the conditional distribution 
p(y|x). 



Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Normalized??



Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Normalized



Classification Tasks at Kaggle 

https://www.kaggle.com/c/human-protein-atlas-image-classification

Classify human protein microscope images into 28 categories



y1, y2, …, yk = softmax( f1, f2, . . . , fk)

More complicated neural networks

f1 f2 fk

Input layer

Hidden layer

Output layer



More complicated neural networks

• Input 
• Hidden  

x ∈ ℝd

h = σ(W(1)x + b)

W(1) ∈ ℝm×d, b ∈ ℝm

f = W(2)h + b(2)

y = softmax(f)

y1, y2, …, yk = softmax( f1, f2, . . . , fk)

f1 f2 fk

Input layer

Hidden layer

Output layer

We can also use the matrix notation. 



More complicated neural networks: multiple hidden layers

f1 f2
h1 = σ(W1x + b1)
h2 = σ(W2h1 + b2)
h3 = σ(W3h2 + b3)

f = W4h3 + b4

y = softmax(f)

Multiple layer networks: composition of layers; each layer is linear transformation+nonlinear activation functions; hidden layers typically use element-wise activation 
functions; the output layer can use no activation (for regression), sigmoid (for binary classification), or softmax (for multi-class classification). 



Quiz Break

Which output function is often used for multi-class classification tasks?

A  Sigmoid function
B  Rectified Linear Unit (ReLU)
C  Softmax function
D  Max function



Quiz Break

Which output function is often used for multi-class classification tasks?

A  Sigmoid function
B  Rectified Linear Unit (ReLU)
C  Softmax function
D  Max function



Quiz Break

Suppose you are given a 3-layer multilayer perceptron (2 hidden layers 
h1 and h2 and 1 output layer). All activation functions are sigmoids, 
and the output layer uses a softmax function. Suppose h1 has 1024 
units and h2 has 512 units. Given a dataset with 2 input features and 3 
unique class labels, how many learnable parameters does the 
perceptron have in total?

1024 * 2 + 1024 + 512 * 1024 + 512 + 512 * 3 + 3 = 529411



Quiz Break

Suppose you are given a 3-layer multilayer perceptron (2 hidden layers 
h1 and h2 and 1 output layer). All activation functions are sigmoids, 
and the output layer uses a softmax function. Suppose h1 has 1024 
units and h2 has 512 units. Given a dataset with 2 input features and 3 
unique class labels, how many learnable parameters does the 
perceptron have in total?

1024 * 2 + 1024 + 512 * 1024 + 512 + 512 * 3 + 3 = 529411



Quiz Break
Consider a three-layer network with linear Perceptrons for binary 
classification. The hidden layer has 3 neurons. Can the network represent a 
XOR problem?  

a)Yes
b)No



Quiz Break
Consider a three-layer network with linear Perceptrons for binary 
classification. The hidden layer has 3 neurons. Can the network represent a 
XOR problem?  

a)Yes
b)No

Solu+on: 
A combina+on of linear Perceptrons is s+ll a linear func+on. 



Classify cats vs. dogs

Output 

Hidden layer 
Input 

100 neurons

How to train a neural network?



Output 

Hidden layer 
Input 

100 neurons

How to train a neural network?
x ∈ ℝd One training data point in the training set D
̂y Model output for example x 

y Ground truth label for example x 

Learning by matching the output  
to the label

We want when ,  
and  when 

̂y → 1 y = 1
̂y → 0 y = 0

Three elements to specify a machine learning method: 

1. Model class (here the networks)

2. Loss function (cross-entropy for classification, usually squared loss for regression)

3. Optimization method (gradient descent)

We will consider classification.


We have specify the model class, now we specify the loss.

The loss on the training set is an average over the training data points. The loss for each data point is meant to measure the difference between the output and the true 
label. 




Output 

Hidden layer 
Input 

100 neurons

How to train a neural network?
Loss function: 1

|D | ∑
i

ℓ(xi, yi)

ℓ(x, y) = − y log( ̂y) − (1 − y)log(1 − ̂y)
Per-sample loss:

Also known as binary cross-entropy loss

For binary classification with labels {0,1}, the loss for each data point is defined as shown. When y=0, minimizing this binary cross-entropy loss means pushing the 
prediction \hat{y} to 0. When y=1, minimizing it means pushing the prediction \hat{y} to 1. 



Output 

Hidden layer 
Input 

100 neurons

How to train a neural network?
Loss function:

ℓ(x, y) =
K

∑
j=1

− Yj log pj = − log py

Per-sample loss:

where     is one-hot encoding of 

Also known as cross-entropy loss  
or softmax loss

1
|D | ∑

(x,y)∈D

ℓ(x, y)

Y

For multi-class classification, the loss for each data point (per sample loss) is defined to be the cross-entropy between the output probabilistic vector (a distribution over 
the k classes) and the true probabilistic vector (another distribution over the k classes). cross-entropy is a notion from information theory, measuring the “difference” 
between two distributions. Here it’s applied on the output probabilities and the true probabilities. 


The output probabilities: the output after softmax in the network. 

The true probabilities: turn the label y (taking value in {1,2,…,k}) into a one-hot encoding vector Y. Here, Y is a vector of dimension k (corresponding to the k classes), and 
has value 1 on the dimension corresponding to the true label class y, and has value 0 for the other dimensions. It can be viewed as a probabilistic vector, putting 
probability mass 1 on the class y, and mass 0 on the other classes. 


Since Y is a one-hot vector, the cross-entropy reduces to the negation of the log on the output probability over the true class y. Minimizing the loss is maximizing the 
output probability over the true class y (i.e., pushing the vector p to be the same as the vector Y).  



Output 

Hidden layer 
Input 

100 neurons

How to train a neural network?
Update the weights W to minimize the loss function

Use gradient descent! 

1
|D | ∑

(x,y)∈D

ℓ(x, y)

Now we’ve specified the models and the loss, we are ready to specify the third element in the learning method: the optimization method for minimizing the loss. 


For neural networks, typically we use gradient descent. More precisely, we use some variants of gradient descent. 



Gradient Descent
• Choose a learning rate  
• Initialize the model parameters  
• For t =1,2,…

α > 0
w0

• Update parameters:

wt = wt−1 − α
∂L

∂wt−1

= wt−1 − α
1

|D | ∑
(x,y)∈D

∂ℓ(x, y)
∂wt−1

• Repeat until converges

D can 
be very large. 

Expensive 

w0

w1
w2

One way is to do gradient descent.



Minibatch Stochastic Gradient Descent
• Choose a learning rate  
• Initialize the model parameters  
• For t =1,2,…

α > 0
w0

• Randomly sample a subset (mini-batch) 
Update parameters:

B ⊂ D

wt = wt−1 − α
1

|B | ∑
(x,y)∈B

∂ℓ(x, y)
∂wt−1

• Repeat

w0

w1
w2

The gradient w.r.t. all 
parameters is obtained by 
concatenating the partial 

derivatives w.r.t. each 
parameter

We typically use stochastic gradient descent. 


We initialize the model parameter (usually using Gaussian random numbers). We also pick some learning rate \alpha.

Then we run in iterations. In each iteration, randomly sample a batch of training data points; average the gradient of the loss on the sampled training data points w.r.t. the 
parameters; move along the negation of the average gradient direction with step size \alpha, to get a new set of parameter values. Repeat this until we run out of time 
budget or are satisfied with the loss. 


What’s the gradient of the loss on a sampled training data point w.r.t. the parameters? 

1. It’s a concatenation of the partial derivative w.r.t. each parameter. 

2. The partial derivative w.r.t. one particular parameter: we can view the loss as a single-variable function on that particular parameter, and take the gradient of that 

function. That is, view all the other variables as constant, and compute the gradient. This is the partial derivative w.r.t. that particular parameter. 


Note: Here we describe the algorithm as iterations and each iteration samples a batch. In practice, usually it’s slightly different: we run in epochs; in each epoch we 
randomly partition the training data into batches, and then use the batches one by one (ie, run in iterations and each iteration uses one batch). 

 



Non-convex 
Optimization

[Gao and Li et al., 2018]



Calculate Gradient (on one data point)

• Want to compute 
∂ℓ(x, y)

∂w11

sigmoid activation, binary cross-entropy loss

̂y = σ(w1x1 + w2x2)
ℓ(x, y) = − y log ̂y − (1 − y)log(1 − ̂y)

Now the question is how to compute the derivative of the loss on one data point w.r.t. a particular parameter. The method for this is called back propagation. 


Here we give an example to demonstrate the method. For simplicity, we assume no bias. 



Calculate Gradient (on one data point)

ℓ(x, y)

First write down the forward computation chain (computation graph) from input to the final loss on the data point.



Calculate Gradient (on one data point)

ℓ(x, y)
∂ ̂y
∂z

= σ′ (z)
∂ℓ(x, y)

∂ ̂y
=

1 − y
1 − ̂y

−
y
̂y

• By chain rule:

∂z
∂w11

= x1
Partial derivative: view all the 
other variables as constants, 

and compute the gradient

Next consider computing the gradient by chain rule. Then compute each term separately and multiply them. 



Calculate Gradient (on one data point)

ℓ(x, y)
∂ℓ(x, y)

∂ ̂y
=

1 − y
1 − ̂y

−
y
̂y

• By chain rule: x1

∂ ̂y
∂z

= σ′ (z) = σ(z)(1 − σ(z))



Calculate Gradient (on one data point)

ℓ(x, y)

• By chain rule: ̂y(1 − ̂y)x1

∂ℓ(x, y)
∂ ̂y

=
1 − y
1 − ̂y

−
y
̂y



Calculate Gradient (on one data point)

ℓ(x, y)
∂ ̂y
∂z

= σ′ (z) = σ(z)(1 − σ(z))

• By chain rule: (
1 − y
1 − ̂y

−
y
̂y
) ̂y(1 − ̂y)x1



Calculate Gradient (on one data point)

ℓ(x, y)
∂ ̂y
∂z

= σ′ (z) = σ(z)(1 − σ(z))

• By chain rule: ( ̂y − y)x1



Calculate Gradient (on one data point)

ℓ(x, y)
∂ ̂y
∂z

= σ′ (z) = σ(z)(1 − σ(z))

• By chain rule:

Similarly, we can also compute the derivative w.r.t. x_1 and x_2.



Calculate Gradient (on one data point)

ℓ(x, y)
∂ ̂y
∂z

= σ′ (z) = σ(z)(1 − σ(z))

• By chain rule:

Make it deeper

Now consider a deeper network. 


By our computation in the previous slide, we know the derivatives w.r.t. the output of the first layer a_11 and a_12. (just view them as the x_1 and x_2 in the previous 
slide!)



Calculate Gradient (on one data point)

• By chain rule:

Now we can compute the derivative w.r.t. the weights in the first layer. We can apply chain rule and reuse the computed derivatives w.r.t. a_11 and a_12. All we need to 
do is to compute a step backward: the derivative of a_11 w.r.t. the weight w^{(1)}_11. 


This is called back-propagation. 



Calculate Gradient (on one data point)

• By chain rule:



Calculate Gradient (on one data point)

• By chain rule:

Similarly, we can compute the derivatives w.r.t. the input.



Quiz Break

Gradient Descent in neural network training computes the ______ of a 
loss function with respect to the model ______ until convergence.

A  gradients, parameters
B  parameters, gradients
C  loss, parameters
D parameters, loss



Quiz Break

Gradient Descent in neural network training computes the ______ of a 
loss function with respect to the model ______ until convergence.

A  gradients, parameters
B  parameters, gradients
C  loss, parameters
D parameters, loss



Quiz Break

Suppose you are given a dataset with 1,000,000 images to train with. 
Which of the following methods is more desirable if training resources 
are limit but enough accuracy is needed?

A  Gradient Descent
B  Stochastic Gradient Descent
C  Minibatch Stochastic Gradient Descent
D  Computation Graph



Quiz Break

Suppose you are given a dataset with 1,000,000 images to train with. 
Which of the following methods is more desirable if training resources 
are limit but enough accuracy is needed?

A  Gradient Descent
B  Stochastic Gradient Descent
C  Minibatch Stochastic Gradient Descent
D  Computation Graph

Too large dataset for limited training resources, so cannot use Gradient descent. SGD with one sample each time: may not be accurate. Computation graph: an auxiliary 
technique for doing gradient computation. 



Brief history of neural networks



HW6



HW6 (working with MNIST dataset)



Demo: Learning XOR using neural net

•https://playground.tensorflow.org/

https://playground.tensorflow.org/


What we’ve learned today…
• Single-layer Perceptron Review


• Multi-layer Perceptron 


• Single output


• Multiple output 


• How to train neural networks


• Gradient descent 



Thanks!


