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Review: machine learning basics



Math formulation

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Find y = f(x) € # that minimizes L(f) = % i—1 L(f, xi, i)
* s.t. the expected loss is small

L(f) — IE':(x,y)~D L%, y)]



Machine learning 1-2-3

* Collect data and extract features
* Build model: choose hypothesis class H and loss function [
e Optimization: minimize the empirical loss
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Example: Linear regression

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D

* Find f,(x) = w’x that minimizes L(f,, =% e (whx — y;)?




Why [, loss

* Why not choose another loss
* [, loss, hinge loss, exponential loss, ...

 Empirical: easy to optimize
e Forlinearcase:w = (XTX)"1XTy

* Theoretical: a way to encode prior knowledge

Questions:
* What kind of prior knowledge?
* Principal way to derive loss?



Maximum Likelihood Estimation



Maximum Likelihood Estimation (MLE)

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(x,v): 0 € O} be a family of distributions indexed by 6

* Would like to pick 8 so that Py (x, y) fits the data well



Maximum Likelihood Estimation (MLE)

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(x,v): 0 € O} be a family of distributions indexed by 6

* “fitness” of 6 to one data point (x;, y;)
likelihood(8; x;,v;) = Pg(x;,V;)
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Maximum Likelihood Estimation (MLE)

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(x,v): 0 € O} be a family of distributions indexed by 6

* MLE: maximize “fitness” of 0 to i.i.d. data points {(x;, y;)}

0y = argmaxgeg log[l]; Po(x;, i)

Om1 = argmaxgee 2;108[Po(xi, Vi)



Maximum Likelihood Estimation (MLE)

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(x,v): 0 € O} be a family of distributions indexed by 6

* MLE: negative log-likelihood loss
Oy = argmaxgee Xilog(Pe(x;, ;)

[(Pg,x;,y;) = —log(Pg(xy,¥:))
L(Pg) = — X;log(Pg(x;, 1))



MLE: conditional log-likelihood

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
e Let {Py(v|x): 6 € O} be a family of distributions indexed by 6

Oy = argmaxgee 2.;108(Py (vilx:))

[(Pg,x;,y;) = — log(Pg(y;i]x;))
L(Pg) = — X;1og(Po (yi]x:))



MLE: conditional log-likelihood
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Example: [, loss

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
. L= 1
* Find f5 () that minimizes L(fg) = — XL, (fp (x;) — y;)?



Example: [, loss

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
. L 1
* Find fg (x) that minimizes L(fp) = — XL (fp (x;) — yi)?

* Define Py (y|x) = Normal(y; fo(x),0%)
* log(Po (yilxi)) = 5 5 (fa(x) — yi)?—log(c) — ‘108(27T)

* Oy, = argmingeg gzi=1(f9 (x:) — ¥i)*



Linear classification



Example 1: image classification

Indoor outdoor



Example 2: Spam detection

——mm_

Email 1
Email 2 0 1 0 No
Email 3 1 1 1 Yes
Email n



Why classification

* Classification: a kind of summary
* Easy to interpret
* Easy for making decisions



Linear classification wTx = 0

wlix >0

wlix <0
Class 1 ¢
O
O
= O Class O




Linear classification: natural attempt

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D

* Hypothesis f;, (x) = w’x
cy=1ifwix>0
cy=0ifwlx <0

e Prediction: y = step(f;,(x)) = step(w’x)



Linear classification: natural attempt

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
* Find f;, (x) = w”x to minimize L(f,,) = %2‘1:1 I[step(w!x;) # v;]

* Drawback: difficult to optimize
* NP-hard in the worst case




Linear classification: simple approach

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D

* Find f,(x) = w”x that minimizes L(f,,) = %Z}Ll(WTxi — ¥i)*




Linear classification: logistic regression

* Probabilistic view: try to output the probability distribution P(y|x)
Py(y=1]x) = o(w'x) =

1+ exp(—w'x)

P,(y=0|x)=1-P,(y =1x) =1—-0c(w"x)



Sigmoid

* Prediction bounded in [0,1] |
* Smooth

1
1+exp(—a) 0.5

 Sigmoid: o(a) =

0

Figure borrowed from Pattern Recognition and Machine Learning, Bishop



Linear classification: logistic regression

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
* Find w that minimizes

S

1 n
Ew) === > log Ru(ilx)

i=1

. 1 1

Liw) = —— z logo(w!x;) — — Z log[1 — a(w’x))]
nyizl nyi=0




Linear classification: logistic regression

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
* Find w that minimizes

. 1 1
Liw) = —— 2 logo(w!x;) — — 2 log[1 — o(wlx;)]
nyi=1 n)/i=0




Properties of sigmoid function

* Bounded
1
= e (0,1
o(a) 1+ exp(—a) (01
* Symmetric
exp(—a)
1 - — — — —
o(a) 1+ exp(—a) exp(a)+1 o(-a)

* Gradient

exp(—a)
(1 + exp(—a))?

o'(a) =

= 0(a)(1—o(a))



