
Natural Language Processing Basics
Yingyu Liang

University of Wisconsin-Madison

Natural language Processing (NLP)

• The processing of the human languages by computers

• One of the oldest AI tasks

• One of the most important AI tasks

• One of the hottest AI tasks nowadays

Difficulty

• Difficulty 1: ambiguous, typically no formal description

• Example: “We saw her duck.”

How many different meanings?

Difficulty

• Difficulty 1: ambiguous, typically no formal description

• Example: “We saw her duck.”

• 1. We looked at a duck that belonged to her.

• 2. We looked at her quickly squat down to avoid something.

• 3. We use a saw to cut her duck.

Difficulty

• Difficulty 2: computers do not have human concepts

• Example: “She like little animals. For example, yesterday we saw her
duck.”

• 1. We looked at a duck that belonged to her.

• 2. We looked at her quickly squat down to avoid something.

• 3. We use a saw to cut her duck.

Words
Preprocess

Zipf’s Law

Preprocess

• Corpus: often a set of text documents

• Tokenization or text normalization: turn corpus into sequence(s) of tokens

1. Remove unwanted stuff: HTML tags, encoding tags

2. Determine word boundaries: usually white space and punctuations
• Sometimes can be tricky, like Ph.D.

Preprocess

• Tokenization or text normalization: turn data into sequence(s) of tokens

1. Remove unwanted stuff: HTML tags, encoding tags

2. Determine word boundaries: usually white space and punctuations
• Sometimes can be tricky, like Ph.D.

3. Remove stopwords: the, of, a, with, …

Preprocess

• Tokenization or text normalization: turn data into sequence(s) of tokens

1. Remove unwanted stuff: HTML tags, encoding tags

2. Determine word boundaries: usually white space and punctuations
• Sometimes can be tricky, like Ph.D.

3. Remove stopwords: the, of, a, with, …

4. Case folding: lower-case all characters.
• Sometimes can be tricky, like US and us

5. Stemming/Lemmatization (optional): looks, looked, looking  look

Vocabulary

Given the preprocessed text

• Word token: occurrences of a word

• Word type: unique word as a dictionary entry (i.e., unique tokens)

• Vocabulary: the set of word types
• Often 10k to 1 million on different corpora

• Often remove too rare words

Zipf’s Law

• Word count 𝑓, word rank 𝑟

• Zipf’s law: 𝑓 ∗ 𝑟 ≈ constant

Zipf’s law on the corpus Tom Sawyer

Text: Bag-of-Words Representation
Bag-of-Words

tf-idf

Bag-of-Words

How to represent a piece of text (sentence/document) as numbers?

• Let 𝑚 denote the size of the vocabulary

• Given a document 𝑑, let 𝑐(𝑤, 𝑑) denote the #occurrence of 𝑤 in 𝑑

• Bag-of-Words representation of the document

𝑣𝑑 = 𝑐 𝑤1, 𝑑 , 𝑐 𝑤2, 𝑑 , … , 𝑐 𝑤𝑚, 𝑑 /𝑍𝑑
• Often 𝑍𝑑 = σ𝑤 𝑐(𝑤, 𝑑)

Example

• Preprocessed text: this is a good sentence this is another good
sentence

• BoW representation:
𝑐 ′𝑎′, 𝑑 /𝑍𝑑 , 𝑐 ′𝑖𝑠′, 𝑑 /𝑍𝑑 , … , 𝑐 ′𝑒𝑥𝑎𝑚𝑝𝑙𝑒′, 𝑑 /𝑍𝑑

• What is 𝑍𝑑?

• What is 𝑐 ′𝑎′, 𝑑 /𝑍𝑑?

• What is 𝑐 ′𝑒𝑥𝑎𝑚𝑝𝑙𝑒′, 𝑑 /𝑍𝑑?

tf-idf

• tf: normalized term frequency

𝑡𝑓𝑤 =
𝑐(𝑤, 𝑑)

max
𝑣

𝑐(𝑣, 𝑑)

• idf: inverse document frequency

𝑖𝑑𝑓𝑤 = log
total #doucments

#documents containing 𝑤

• tf-idf: 𝑡𝑓-𝑖𝑑𝑓𝑤 = 𝑡𝑓𝑤 ∗ 𝑖𝑑𝑓𝑤
• Representation of the document

𝑣𝑑 = [𝑡𝑓−𝑖𝑑𝑓𝑤1
, 𝑡𝑓−𝑖𝑑𝑓𝑤2

, … , 𝑡𝑓−𝑖𝑑𝑓𝑤𝑚
]

Cosine Similarity

How to measure similarities between pieces of text?

• Given the document vectors, can use any similarity notion on vectors

• Commonly used in NLP: cosine of the angle between the two vectors

𝑠𝑖𝑚 𝑥, 𝑦 =
𝑥⊤𝑦

𝑥⊤𝑥 𝑦⊤𝑦

Text: statistical Language Model
Statistical language model

N-gram

Smoothing

Probabilistic view

• Use probabilistic distribution to model the language

• Dates back to Shannon (information theory; bits in the message)

Statistical language model

• Language model: probability distribution over sequences of tokens

• Typically, tokens are words, and distribution is discrete

• Tokens can also be characters or even bytes

• Sentence: “the quick brown fox jumps over the lazy dog”

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9Tokens:

Statistical language model

• For simplification, consider fixed length sequence of tokens (sentence)

• Probabilistic model:

(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝜏−1, 𝑥𝜏)

P [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝜏−1, 𝑥𝜏]

Unigram model

• Unigram model: define the probability of the sequence as the product
of the probabilities of the tokens in the sequence

• Independence!

P 𝑥1, 𝑥2, … , 𝑥𝜏 =ෑ

𝑡=1

𝜏

P[𝑥𝑡]

A simple unigram example

• Sentence: “the dog ran away”

• How to estimate on the training corpus?

෠P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 = ෠P 𝑡ℎ𝑒 ෠P 𝑑𝑜𝑔 ෠P 𝑟𝑎𝑛 ෠P[𝑎𝑤𝑎𝑦]

෠P 𝑡ℎ𝑒

A simple unigram example

• Sentence: “the dog ran away”

• How to estimate on the training corpus?

෠P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 = ෠P 𝑡ℎ𝑒 ෠P 𝑑𝑜𝑔 ෠P 𝑟𝑎𝑛 ෠P[𝑎𝑤𝑎𝑦]

෠P 𝑡ℎ𝑒

n-gram model

• 𝑛-gram: sequence of 𝑛 tokens

• 𝑛-gram model: define the conditional probability of the 𝑛-th token
given the preceding 𝑛 − 1 tokens

P 𝑥1, 𝑥2, … , 𝑥𝜏 = P 𝑥1, … , 𝑥𝑛−1 ෑ

𝑡=𝑛

𝜏

P[𝑥𝑡|𝑥𝑡−𝑛+1, … , 𝑥𝑡−1]

n-gram model

• 𝑛-gram: sequence of 𝑛 tokens

• 𝑛-gram model: define the conditional probability of the 𝑛-th token
given the preceding 𝑛 − 1 tokens

P 𝑥1, 𝑥2, … , 𝑥𝜏 = P 𝑥1, … , 𝑥𝑛−1 ෑ

𝑡=𝑛

𝜏

P[𝑥𝑡|𝑥𝑡−𝑛+1, … , 𝑥𝑡−1]

Markovian assumptions

Typical 𝑛-gram model

• 𝑛 = 1: unigram

• 𝑛 = 2: bigram

• 𝑛 = 3: trigram

Training 𝑛-gram model

• Straightforward counting: counting the co-occurrence of the grams

For all grams (𝑥𝑡−𝑛+1, … , 𝑥𝑡−1, 𝑥𝑡)

1. count and estimate ෠P[𝑥𝑡−𝑛+1, … , 𝑥𝑡−1, 𝑥𝑡]

2. count and estimate ෠P 𝑥𝑡−𝑛+1, … , 𝑥𝑡−1
3. compute

෠P 𝑥𝑡 𝑥𝑡−𝑛+1, … , 𝑥𝑡−1 =
෠P 𝑥𝑡−𝑛+1, … , 𝑥𝑡−1, 𝑥𝑡
෠P 𝑥𝑡−𝑛+1, … , 𝑥𝑡−1

A simple trigram example

• Sentence: “the dog ran away”

෠P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 = ෠P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 ෠P[𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛]

෠P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 = ෠P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛
෠P[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦]

෠P[𝑑𝑜𝑔 𝑟𝑎𝑛]

Drawback

• Sparsity issue: ෠P … most likely to be 0

• Bad case: “dog ran away” never appear in the training corpus, so
෠P[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦] = 0

• Even worse: “dog ran” never appear in the training corpus, so
෠P[𝑑𝑜𝑔 𝑟𝑎𝑛] = 0

Rectify: smoothing

• Basic method: adding non-zero probability mass to zero entries

• Example: Laplace smoothing that adds one count to all 𝑛-grams

pseudocount[𝑑𝑜𝑔] = actualcount 𝑑𝑜𝑔 + 1

Rectify: smoothing

• Basic method: adding non-zero probability mass to zero entries

• Example: Laplace smoothing that adds one count to all 𝑛-grams

pseudocount[𝑑𝑜𝑔] = actualcount 𝑑𝑜𝑔 + 1

෠P 𝑑𝑜𝑔 =
pseudocount[𝑑𝑜𝑔]

pseudo length of the corpus
=

pseudocount[𝑑𝑜𝑔]

actual length of the corpus + |𝑉|

Rectify: smoothing

• Basic method: adding non-zero probability mass to zero entries

• Example: Laplace smoothing that adds one count to all 𝑛-grams

pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦] = actualcount 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 + 1

pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛] = ?

Rectify: smoothing

• Basic method: adding non-zero probability mass to zero entries

• Example: Laplace smoothing that adds one count to all 𝑛-grams

pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦] = actualcount 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 + 1

pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛] = actualcount 𝑑𝑜𝑔 𝑟𝑎𝑛 + |𝑉|

෠P 𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛 ≈
pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦]

pseudocount [𝑑𝑜𝑔 𝑟𝑎𝑛]
since #bigrams ≈#trigrams on the corpus

Example

• Preprocessed text: this is a good sentence this is another good
sentence

• How many unigrams?

• How many bigrams?

• Estimate ෠P 𝑖𝑠|𝑡ℎ𝑖𝑠 without using Laplace smoothing

• Estimate ෠P 𝑖𝑠|𝑡ℎ𝑖𝑠 using Laplace smoothing (|V| = 10000)

Rectify: smoothing

• Basic method: adding non-zero probability mass to zero entries
• Example: Laplace smoothing

• Back-off methods: restore to lower order statistics
• Example: if ෡P[𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛] does not work, use ෡P 𝑎𝑤𝑎𝑦 𝑟𝑎𝑛 as

replacement

• Mixture methods: use a linear combination of ෠P 𝑎𝑤𝑎𝑦 𝑟𝑎𝑛 and
෠P[𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛]

Another drawback

• High dimesion: # of grams too large

• Vocabulary size: about 10k=2^14

• #trigram: about 2^42

Rectify: clustering

• Class-based language models: cluster tokens into classes; replace
each token with its class

• Significantly reduces the vocabulary size; also address sparsity issue

• Combinations of smoothing and clustering are also possible

