Natural Language Processing Basics

Yingyu Liang

University of Wisconsin-Madison

Natural language Processing (NLP)

* The processing of the human languages by computers

* One of the oldest Al tasks
* One of the most important Al tasks

* One of the hottest Al tasks nowadays

Difficulty

* Difficulty 1: ambiguous, typically no formal description

* Example: “We saw her duck.”

How many different meanings?

Difficulty

* Difficulty 1: ambiguous, typically no formal description

* Example: “We saw her duck.”

* 1. We looked at a duck that belonged to her.

* 2. We looked at her quickly squat down to avoid something.
* 3. We use a saw to cut her duck.

Difficulty

e Difficulty 2: computers do not have human concepts

* Exampte: “She like little animals. For example, yesterday we saw her
duck.”

* 1. We looked at a duck that belonged to her.

Words

Preprocess

Zipf's Law

Preprocess

* Corpus: often a set of text documents
* Tokenization or text normalization: turn corpus into sequence(s) of tokens

1. Remove unwanted stuff: HTML tags, encoding tags

2. Determine word boundaries: usually white space and punctuations
* Sometimes can be tricky, like Ph.D.

Preprocess

* Tokenization or text normalization: turn data into sequence(s) of tokens

1. Remove unwanted stuff: HTML tags, encoding tags

2. Determine word boundaries: usually white space and punctuations
* Sometimes can be tricky, like Ph.D.

3. Remove stopwords: the, of, a, with, ...

Preprocess

* Tokenization or text normalization: turn data into sequence(s) of tokens

1. Remove unwanted stuff: HTML tags, encoding tags

2. Determine word boundaries: usually white space and punctuations
* Sometimes can be tricky, like Ph.D.

3. Remove stopwords: the, of, a, with, ...

4. Case folding: lower-case all characters.
* Sometimes can be tricky, like US and us

5. Stemming/Lemmatization (optional): looks, looked, looking = look

Vocabulary

Given the preprocessed text
* Word token: occurrences of a word
* Word type: uniqgue word as a dictionary entry (i.e., unique tokens)

* VVocabulary: the set of word types
e Often 10k to 1 million on different corpora
* Often remove too rare words

Zipf’s Law

Word Count f rank r fr
the 3332 1 3332
* Word count f, word rank r wne prtle s
* Zipf's law: f * r = constant he 877 10 8770
but 410 20 8400
be 294 30 8820
there 222 40 8880
one 172 50 8600
two 104 100 10400
turned 51 200 10200
COIMes 16 500 8000
family 8 1000 8000
brushed 4 2000 8000
Could 2 4000 8000
Applausive | 8000 8000

Zipf’s law on the corpus Tom Sawyer

Text: Bag-of-Words Representation

Bag-of-Words

How to represent a piece of text (sentence/document) as numbers?

* Let m denote the size of the vocabulary
* Given a document d, let c(w, d) denote the #occurrence of w in d

* Bag-of-Words representation of the document
vy = [c(wy,d), c(wy,d), ...,c(w,, d)]/Z,
e OftenZ,; =)., c(w,d)

Example

* Preprocessed text: this is a good sentence this is another good
sentence

* BoW representation:
lc('a’,d)/Z,4,c(is',d)/Z,, ...,c("example’,d)/Z 4]

* Whatis Z,;?
* Whatisc('a’,d)/Z;?
* What is c("example’,d)/Z;?

tf-idf

* tf: normalized term frequency
c(w,d)
tfyw =

~ maxc(v,d)
v

* idf: inverse document frequency
, total #doucments
ldfw = log #documents containing w
o tf-idf: tf-idf, =tf, *idf,
* Representation of the document

vy = [tf-idf,, , tf-idf, , .., tf-idf,]

Cosine Similarity

How to measure similarities between pieces of text?

* Given the document vectors, can use any similarity notion on vectors
* Commonly used in NLP: cosine of the angle between the two vectors

x'y
\/xTx\/yTy

sim(x,y) =

Text: statistical Language Model

Statistical language model
N-gram

Smoothing

Probabilistic view

* Use probabilistic distribution to model the language
e Dates back to Shannon (information theory; bits in the message)

Statistical language model

* Language model: probability distribution over sequences of tokens
e Typically, tokens are words, and distribution is discrete

* Tokens can also be characters or even bytes

* Sentence: “the quick brown fox jumps over the lazy dog”

Tokens: x; X, X3 X4 Xg Xg X7 Xg Xg

Statistical language model

* For simplification, consider fixed length sequence of tokens (sentence)

(le X2y X3y ey Xg—1,) x’c)

* Probabilistic model:

Plx{, x5, X3, e, X7_q, Xf]

Unigram model

* Unigram model: define the probability of the sequence as the product
of the probabilities of the tokens in the sequence

T
Plxq, x5, ., x| = 1_[Px;]
t=1

* Independence!

A simple unigram example

* Sentence: “the dog ran away”

P[the dog ran away] = P[the] P[dog] P[ran] P[away]

* How to estimate P[the] on the training corpus?

A simple unigram example

* Sentence: “the dog ran away”

P[the dog ran away] = P[the] P[dog] P[ran] P[away]

* How to estimate P[the] on the training corpus?

Word Count. f
the 3332
and 2972
A 1775
he 87T
but 410
be 294
there 222

one 172

n-gram model

* n-gram: sequence of n tokens

* n-gram model: define the conditional probability of the n-th token
given the preceding n — 1 tokens

Plxq, %5, o, x;] = Plxq, oo, %11
t

Plxe[xe—n+1, s Xe—1]

T
=n

n-gram model

* n-gram: sequence of n tokens

* n-gram model: define the conditional probability of the n-th token
given the preceding n — 1 tokens

Plxy, x5, .., x7] = Plxq, ., 1]
t

T
Ploe|xe—nt1 oor Xe1]

n

Markovian assumptions

Typical n-gram model

*n = 1:unigram
en = 2: bigram
*n = 3:trigram

Training n-gram model

 Straightforward counting: counting the co-occurrence of the grams

For all grams (x;_,, 41, ..., X¢—1, X¢)

1. count and estimate P[x;_ .1, ..., Xp—1, X¢]

2. count and estimate P[x;_,41, ..., Xr—1]

3. compute R

P[xt—n+1' ---;xt—lyxt]

p[xt—n+1’ "t xt—l]

E\)[xtlxt—n+1» Rk xt—l] —

A simple trigram example

* Sentence: “the dog ran away”
P[the dog ran away] = P[the dog ran] P[away|dog ran]

Pl[dog ran away]

P[the dog ran away] = P[the dog ran] —
Pldog ran]

Drawback

e Sparsity issue: P[...] most likely to be 0

* Bad case: “dog ran away” never appear in the training corpus, so
Pldog ran away]| =0

* Even worse: “dog ran” never appear in the training corpus, so
Pldog ran] =0

Rectify: smoothing

* Basic method: adding non-zero probability mass to zero entries

* Example: Laplace smoothing that adds one count to all n-grams
pseudocount[dog| = actualcount|dog| + 1

Rectify: smoothing

* Basic method: adding non-zero probability mass to zero entries

* Example: Laplace smoothing that adds one count to all n-grams
pseudocount[dog| = actualcount|dog| + 1

pseudocount|dog| pseudocount|dog]|

Pldog] = =
[dog] pseudo length of the corpus actual length of the corpus + |V

Rectify: smoothing

* Basic method: adding non-zero probability mass to zero entries

 Example: Lap
pseudocount
pseudocount

ace smoothing that adds one count to all n-grams
dog ran away| = actualcount|dog ran away| + 1

dog ran| =7

Rectify: smoothing

* Basic method: adding non-zero probability mass to zero entries

 Example: Lap
pseudocount
pseudocount

Plaway|dog ran] =

ace smoothing that adds one count to all n-grams
dog ran away| = actualcount|dog ran away| + 1

dog ran| = actualcount|dog ran| + |V|

pseudocount|dog ran away|

pseudocount [dog ran]|

since #bigrams ~#trigrams on the corpus

Example

* Preprocessed text: this is a good sentence this is another good
sentence

* How many unigrams?

* How many bigrams?

* Estimate P[is|this] without using Laplace smoothing

» Estimate P[is|this] using Laplace smoothing (|V| = 10000)

Rectify: smoothing

* Basic method: adding non-zero probability mass to zero entries
* Example: Laplace smoothing

e Back-off methods: restore to lower order statistics

* Example: if P[away|dog ran] does not work, use P[away|ran] as
replacement

* Mixture methods: use a linear combination of P[away|ran] and

P

Plaway|dog ran]

Another drawback

* High dimesion: # of grams too large

* Vocabulary size: about 10k=2/14
e #itrigram: about 2742

Rectify: clustering

* Class-based language models: cluster tokens into classes; replace
each token with its class

* Significantly reduces the vocabulary size; also address sparsity issue

* Combinations of smoothing and clustering are also possible

