HOMEWORK 3: WRITTEN EXERCISE PART

Multinomial Naïve Bayes [25/2 pts]

Consider the Multinomial Naïve Bayes model. For each point (\mathbf{x}, y) , $y \in \{0, 1\}$, $\mathbf{x} = (x_1, x_2, \dots, x_M)$ where each x_i is an integer from $\{1, 2, \dots, K\}$ for $1 \le j \le M$. Here K and M are two fixed integer. Suppose we have N data points $\{(\mathbf{x}^{(i)}, y^{(i)}) : 1 \le i \le N\}$, generated as follows.

```
for i \in \{1, ..., N\}:
y^{(i)} \sim \text{Bernoulli}(\phi)
```

for $j \in \{1,\ldots,M\}$: $x_j^{(i)} \sim \operatorname{Multinomial}(\theta_{y^{(i)}},1)$ Here $\phi \in \mathbb{R}$ and $\theta_k \in \mathbb{R}^K (k \in \{0,1\})$ are parameters. Note that $\sum_l \theta_{k,l} = 1$ since they are the parameters of a

Derive the formula for estimating the parameters ϕ and θ_k , as we have done in the lecture for the Bernoulli Naïve Bayes model. Show the steps.

Solution goes here.

Logistic Regression [25/2 pts] 2

Suppose for each class $i \in \{1, ..., K\}$, the class-conditional density $p(\mathbf{x}|y=i)$ is normal with mean $\mu_i \in \mathbb{R}^d$ and identity covariance:

$$p(\mathbf{x}|y=i) = N(\mathbf{x}|\mu_i, \mathbf{I}).$$

Prove that $p(y = i | \mathbf{x})$ is a softmax over a linear transformation of \mathbf{x} . Show the steps. Solution goes here.