Q1-1: Are these statements true or false?

(A) Stochastic gradient descent has fewer amount of computation per
gradient update than standard gradient descent.

(B) Large-batch methods often have a worse generalization ability
compared to small-batch methods.

1. True, True

2. True, False

3. False, True

4. False, False



Q1-1: Are these statements true or false?

(A) Stochastic gradient descent has fewer amount of computation per
gradient update than standard gradient descent.

(B) Large-batch methods often have a worse generalization ability
compared to small-batch methods.

1. True, True _

2. True, False

3_ Fa|se, True (A) Since stochastic GD uses single instance per iteration
while standard GD uses full batch training data per
4. False, False iteration, stochastic GD has fewer amount of

computation per iteration.
(B) Small-batch methods is less susceptible to local
minimum, thus having a better generalization ability.
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Q1-2: Assume net® = w, + Z’f:lwixi(d), 0@ = Sigmoid(net®) =
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Q2-1: In backpropagation, every weight is changed by Aw;; =
OE Onet; OFE __OE d0;

n anetj aWji N

unit with o; = Tanh(net;) =

= nd;o;, where §; = — Imet, 90, met; If j is a tanh output

1—-exp(—2netj) 1 ,
1+exp(—2net;)’ and E = 2 (yj 0; ) . Please

calculate the 55 here. Hint: Tanh(z) = 2Sigmoid(2z) — 1,s0 Tanh'(z) =
1 — (Tanh(z))
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Q2-1: In backpropagation, every weight is changed by Aw;; =
JE Omnet; OF 0E 00; .
~ 1 gnet; ow;; = — . If j is a tanh output

anetj 60]- anetj
_ _ 1—exp(—2net;) 1 2
unit with o; = Tanh(net;) = I and E = E(yf —0; ). Please

1+exp(—2net;)’
calculate the §; here. Hint: Tanh(z) = 2Sigmoid(2z) — 1,s0 Tanh'(z) =
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Q2-2: In backpropagation, every weight is changed by Aw;; =
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Q3-1: Are these statements true or false?
(A) Backpropagation is based on the chain rule.
(B) Backpropagation contains only forward passes.

True, True
True, False
False, True
False, False
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Q3-1: Are these statements true or false?
(A) Backpropagation is based on the chain rule.
(B) Backpropagation contains only forward passes.

1. True, True

2. True, False <

3' False’ True (A) We use chain rule to calculate the partial
4. False, False derivatives of composite functions like

neural network.
(B) It contains both forward and backward
passes.
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