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Goals for the lecture

You should understand the following concepts
» sequential data
« computational graph
 recurrent neural networks (RNN) and the advantage
« encoder-decoder RNNs

Optional:
« training recurrent neural networks



Recurrent neural networks

« Dates back to (Rumelhart et al., 1986)

A family of neural networks for handling sequential data, which
iInvolves variable length inputs or outputs

 Especially, for natural language processing (NLP)



Sequential data

Standard setting:

- Each data point: A sequence of vectors x(©), for1 <t <=t
- corresponding sequence of labels y®, for1 <t <t

« Batch data: many sequences with different lengths

Other settings:
 Label: can be a scalar, a vector, or even a sequence

 Examples
« Sentiment analysis
« Machine translation



Example: machine translation @

Economic growth has slowed down in recent years

.l'I _.,-"". ’
| rd \\

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .

Economic growth has slowed down in recent years
| J
,-'I ##// I|
.'I / II
\ | |

La croissance économique s' est ralentie ces dernieres années .

Figure from: devblogs.nvidia.com



More complicated sequential data

» Data point: two dimensional sequences like images
« Label: different type of sequences like text sentences
- Example: image captioning



Image captioning
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Figure from the paper “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”,
by Justin Johnson, Andrej Karpathy, Li Fei-Fei
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A typical dynamic system




A typical dynamic system

S(t+1) = f(S(t),Q)



A typical dynamic system

S(t+2) — f(S(t+1); 9)



A typical dynamic system @




A dynamic system driven by external data @

x(t_z) x(t_l) x(t)

(t+1) — f(s(t),x(”l); 6)



A dynamic system driven by external data @

x(t_z) x(t_l) x(t) x(t+1)

(t+1) — f(s(t),x(”l); 6)



A dynamic system driven by external data @

(t-2) 1) »® MGEY (t+2)

s(t+2) — f(s(”l),x(t”); 6)



A dynamic system driven by external data @

(t-2) 1) »® MGEY (t+2)

S(t+3) — f(S(HZ),x(HS); 6’),



A dynamic system driven by external data @

(t-2) 1) »® MGEY (t+2)

(t+1) — f(s(t),x(”l); 6)

Key: the same and J
for all time steps
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Recurrent neural networks

» Use the same computational function and parameters across
different time steps of the sequence

« Each time step: takes the input entry and the previous hidden
state to compute the current hidden state and the output entry

* Loss: typically computed at every time step



Recurrent neural networks




Recurrent neural networks
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Recurrent neural networks
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Recurrent neural networks
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Recurrent neural networks: standard version @

a® =p+WstD 4 yx®
s(®) = tanh(a(t))




Recurrent neural networks: standard version @

a® =p+WstD 4+ yx®
s® = tanh(a®)
0l =c+Vs®




Recurrent neural networks: standard version @

a® =b+WstD 4+ yx®
s® = tanh(a®)
0® =¢c4+Vs®
$® = softmax(o®)
L®) = CrossEntropy(y(t),f’(t))




Advantage

» Hidden state: a lossy summary of the past

« Shared functions and parameters: greatly reduce the capacity
and good for generalization in learning

 Explicitly use the prior knowledge that the sequential data can
be processed in the same way at different time step (e.g., NLP)



Advantage

» Hidden state: a lossy summary of the past

« Shared functions and parameters: greatly reduce the capacity
and good for generalization in learning

 Explicitly use the prior knowledge that the sequential data can
be processed in the same way at different time step (e.g., NLP)

* Yet still powerful (actually universal): any function computable
by a Turing machine can be computed by such a recurrent

network of a finite size (see, e.g., Siegelmann and Sontag
(1995))



*l.



RNN

» Use the same computational function and parameters across
different time steps of the sequence

« Each time step: takes the input entry and the previous hidden
state to compute the current hidden state and the output entry

* Loss: typically computed at every time step

» Many variants
 Information about the past can be in many other forms
» Only output at the end of the sequence



Recurrent neural network variant @

@ @ Example: use the output at
the previous step

O(t_l)
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Recurrent neural network variant

Example: only output at the
end

0@

W =) - — W
U U U

A x(D x@®




Encoder-decoder RNNs

 RNNs: can map sequence to one vector; or to sequence of
same length

« What about mapping sequence to sequence of different length?

« Example: speech recognition, machine translation, question
answering, etc.



Encoder-decoder RNNs

/ Encoder




Encoder-decoder RNNs
/ Encoder \




Encoder-decoder RNNs
/ Encoder \
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Encoder-decoder RNNs
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Encoder-decoder RNNs
/ Encoder \




Encoder-decoder RNNs
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Encoder-decoder RNNs
/ Encoder \




Encoder-decoder RNNs
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Encoder-decoder RNNs
/ Encoder \




Encoder-decoder RNNs
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Training RNN

* Principle: unfold the computational graph, and use
backpropagation

« Called back-propagation through time (BPTT) algorithm
« Can then apply any general-purpose gradient-based techniques



Training RNN

* Principle: unfold the computational graph, and use
backpropagation

« Called back-propagation through time (BPTT) algorithm
« Can then apply any general-purpose gradient-based techniques

« Conceptually: first compute the gradients of the internal nodes,
then compute the gradients of the parameters



Recurrent neural networks @

a® = b+ WstD 4 yx®
s® = tanh(a®)
0® =¢c4+Vs®
@ @ $® = softmax(o®)
L®) = CrossEntropy(y(t),f’(t))

o1 o® ot+1)




Recurrent neural networks @

Gradient at L(®: (total
loss is sum of those at
different time steps)
() S oL =
A,

o1 o® ot+1)




Recurrent neural networks @

Gradient at o®:
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Recurrent neural networks

Gradient at s(™:
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Recurrent neural networks @

Gradient at s(®:
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Recurrent neural networks @
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The problem of exploding/vanishing gradient

* In an RNN trained on long
sequences (e.g. 100 time steps)
the gradients can easily explode or

» What happens to the magnitude of
the gradients as we backpropagate
through many layers?

— If the weights are small, the vanish.

gradients shrink exponentially. — We can avoid this by initializing the
— If the weights are big the gradients weights very carefully.

grow exponentially. « Even with good initial weights, its

* Typical feed-forward neural nets very hard to detect that the current
can cope with these exponential target output depends on an input

effects because they only have a from many time-steps ago.
few hidden layers. — So RNNs have difficulty dealing with
long-range dependencies.



The Popular LSTM Cell

( (%) )
fi= O'LWf Lh,_IJ +be

" Dashed line indicates time-lag, and @ is element-wise multiplication



The Popular LSTM Cell

Input Gate Output Gate

Forget Gate
Wf

L

" Dashed line indicates time-lag, and @ is element-wise multiplication

( (%) )
fi= O'LWf Lh,_IJ +be

Similarly for i, o,



The Popular LSTM Cell

W' Wo

Input Gate ' Output Gate f' —¢ {Wf (:tj * bf}

Similarly for i, o,
X, w Cell

E w ¢ =fi®c. +
ht-l
Wf Forget Gate

.' . X,
i ® tanh W
ht 1
Xp  heg

" Dashed line indicates time-lag, and @ is element-wise multiplication



The Popular LSTM Cell

Input Gate | Output Gate ft‘ I {Wf (}:11} * bf}

Similarly for i, o,
X, w Cell

:13 T @—0—e— ¢ =fi®c. +
hy4 ' x
z‘,®tanhW( ‘]
htfl
Forget Gate
W ht=0,®tanhc,
Xe  heg

" Dashed line indicates time-lag, and @ is element-wise multiplication



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
; from materials developed by Mark Craven, David Rage, Jude
}Iﬁ Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan,
\W} Tom Dietteric%, Pedro Domingos, and Geoffrey Hinton.
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