Neural Network Part 4: Recurrent Neural Networks

CS 760@UW-Madison

Goals for the lecture

You should understand the following concepts

- sequential data
- computational graph
- recurrent neural networks (RNN) and the advantage
- encoder-decoder RNNs

Optional:

training recurrent neural networks

- Dates back to (Rumelhart et al., 1986)
- A family of neural networks for handling sequential data, which involves variable length inputs or outputs
- Especially, for natural language processing (NLP)

Sequential data

Standard setting:

- Each data point: A sequence of vectors $x^{(t)}$, for $1 \le t \le \tau$
 - corresponding sequence of labels $y^{(t)}$, for $1 \le t \le \tau$
- Batch data: many sequences with different lengths τ

Other settings:

- Label: can be a scalar, a vector, or even a sequence
- Examples
 - Sentiment analysis
 - Machine translation

Example: machine translation

Figure from: devblogs.nvidia.com

More complicated sequential data

- Data point: two dimensional sequences like images
- Label: different type of sequences like text sentences
- Example: image captioning

Image captioning

Figure from the paper "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", by Justin Johnson, Andrej Karpathy, Li Fei-Fei

$$s^{(t+1)} = f(s^{(t)}; \theta)$$

$$s^{(t+1)} = f(s^{(t)}; \theta)$$

$$s^{(t+2)} = f(s^{(t+1)}; \theta)$$

$$s^{(t+3)} = f(s^{(t+2)}; \theta), \dots$$

$$s^{(t+1)} = f(s^{(t)}, x^{(t+1)}; \theta)$$

$$s^{(t+1)} = f(s^{(t)}, x^{(t+1)}; \theta)$$

$$s^{(t+2)} = f(s^{(t+1)}, x^{(t+2)}; \theta)$$

$$s^{(t+3)} = f(s^{(t+2)}, x^{(t+3)}; \theta), \dots$$

Key: the same *f* and

for all time steps

- Use the same computational function and parameters across different time steps of the sequence
- Each time step: takes the input entry and the previous hidden state to compute the current hidden state and the output entry
- Loss: typically computed at every time step

Recurrent neural networks: standard version

$$a^{(t)} = b + Ws^{(t-1)} + Ux^{(t)}$$

 $s^{(t)} = \tanh(a^{(t)})$

Recurrent neural networks: standard version

Recurrent neural networks: standard version

Advantage

- Hidden state: a lossy summary of the past
- Shared functions and parameters: greatly reduce the capacity and good for generalization in learning
- Explicitly use the prior knowledge that the sequential data can be processed in the same way at different time step (e.g., NLP)

Advantage

- Hidden state: a lossy summary of the past
- Shared functions and parameters: greatly reduce the capacity and good for generalization in learning
- Explicitly use the prior knowledge that the sequential data can be processed in the same way at different time step (e.g., NLP)
- Yet still powerful (actually universal): any function computable by a Turing machine can be computed by such a recurrent network of a finite size (see, e.g., Siegelmann and Sontag (1995))

RNN

- Use the same computational function and parameters across different time steps of the sequence
- Each time step: takes the input entry and the previous hidden state to compute the current hidden state and the output entry
- Loss: typically computed at every time step
- Many variants
 - Information about the past can be in many other forms
 - Only output at the end of the sequence

Recurrent neural network variant

Recurrent neural network variant

- RNNs: can map sequence to one vector; or to sequence of same length
- What about mapping sequence to sequence of different length?
- Example: speech recognition, machine translation, question answering, etc.

Training RNN

- Principle: unfold the computational graph, and use backpropagation
- Called back-propagation through time (BPTT) algorithm
- Can then apply any general-purpose gradient-based techniques

Training RNN

- Principle: unfold the computational graph, and use backpropagation
- Called back-propagation through time (BPTT) algorithm
- Can then apply any general-purpose gradient-based techniques
- Conceptually: first compute the gradients of the internal nodes, then compute the gradients of the parameters

Gradient at $L^{(t)}$: (total loss is sum of those at different time steps)

$$\frac{\partial L}{\partial L^{(t)}} = 1.$$

Gradient at $o^{(t)}$:

$$\frac{\partial L}{\partial o_i^{(t)}} = \frac{\partial L}{\partial L^{(t)}} \frac{\partial L^{(t)}}{\partial o_i^{(t)}} = \hat{y}_i^{(t)} - \mathbf{1}_{i, y_{(t)}}$$

$$1_{i,y^{(t)}} = \begin{cases} 1, & y^{(t)} = i \\ 0, & \text{otherwise} \end{cases}$$

Gradient at $s^{(\tau)}$:

$$(\nabla_{\boldsymbol{o}^{(\tau)}} L) \frac{\partial \boldsymbol{o}^{(\tau)}}{\partial \boldsymbol{s}^{(\tau)}} = (\nabla_{\boldsymbol{o}^{(\tau)}} L) \boldsymbol{V}$$

Gradient at $s^{(t)}$:

$$(\nabla_{\boldsymbol{s}^{(t+1)}}L)\;\frac{\partial\boldsymbol{s}^{(t+1)}}{\partial\boldsymbol{s}^{(t)}}+(\nabla_{\boldsymbol{o}^{(t)}}\;L)\frac{\partial\boldsymbol{o}^{(t)}}{\partial\boldsymbol{s}^{(t)}}$$

The problem of exploding/vanishing gradient

- What happens to the magnitude of the gradients as we backpropagate through many layers?
 - If the weights are small, the gradients shrink exponentially.
 - If the weights are big the gradients grow exponentially.
- Typical feed-forward neural nets can cope with these exponential effects because they only have a few hidden layers.

- In an RNN trained on long sequences (e.g. 100 time steps) the gradients can easily explode or vanish.
 - We can avoid this by initializing the weights very carefully.
- Even with good initial weights, its very hard to detect that the current target output depends on an input from many time-steps ago.
 - So RNNs have difficulty dealing with long-range dependencies.

$$f_t = \sigma \left(W_f \begin{pmatrix} x_t \\ h_{t-1} \end{pmatrix} + b_f \right)$$

 $^{^*}$ Dashed line indicates time-lag, and $\stackrel{\textstyle imes}{\textstyle imes}$ is element-wise multiplication

$$f_{t} = \sigma \left(W_{f} \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix} + b_{f} \right)$$
 Similarly for i_t, o_t

 $^{^*}$ Dashed line indicates time-lag, and $\stackrel{\textstyle imes}{\textstyle imes}$ is element-wise multiplication

$$f_t = \sigma \left(W_f \begin{pmatrix} x_t \\ h_{t-1} \end{pmatrix} + b_f \right)$$

Similarly for i_t , o_t

$$\begin{split} c_t &= f_t \otimes c_{t-1} + \\ i_t \otimes \tanh W \binom{x_t}{h_{t-1}} \end{split}$$

 $^{^*}$ Dashed line indicates time-lag, and $\stackrel{\textstyle imes}{\textstyle imes}$ is element-wise multiplication

$$f_t = \sigma \left(W_f \begin{pmatrix} x_t \\ h_{t-1} \end{pmatrix} + b_f \right)$$

Similarly for i_t , o_t

$$c_{t} = f_{t} \otimes c_{t-1} + i_{t} \otimes \tanh W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix}$$

$$h_t = o_t \otimes \tanh c_t$$

^{*} Dashed line indicates time-lag, and \times is element-wise multiplication

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, Tom Dietterich, Pedro Domingos, and Geoffrey Hinton.

