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Goals for the lecture

you should understand the following concepts
e error decomposition
* bias-variance tradeoff
« PAC learning framework
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How to analyze the generalization?

* Key quantity we care in machine learning: the error on
the future data points (i.e., the expected error on the
whole distribution)

« Divide the analysis of the expected error into steps:

« What if full information (i.e., infinite data) and full
computational power (i.e., can do optimization
optimally)?

« What if finite data but full computational power?

* What if finite data and finite computational power?

 Example: error decomposition for prediction in
supervised learning

Bottou, Léon, and Olivier Bousquet. "The tradeoffs of large scale
learning." Advances in neural information processing systems. 2008.



Error/risk decomposition @

* h": the optimal function
(Bayes classifier)

h* . the optimal hypothesis
on the data distribution

P

* hope: the optimal hypothesis
on the training data

) =
Q
<
=

» h: the hypothesis found by
the learning algorithm



Error/risk decomposition @

err(fz) — err(h™)
h* = err(hope) — err(h™)
+ err(ﬁopt) — err(hopt)

+ err(ﬁ) — err(ftopt)



Error/risk decomposition @

err(fz) — err(h™)

Approximation error

= err(hype) —err(h’)
Estimation error

+ err(h — err(h
Optimization error (hopt) (Pope)

+ err(ﬁ) — err(ﬁopt)

“A fundamental theorem of machine learning”



Error/risk decomposition @

err(fz) — err(h*)

e approximation error: due to
problem modeling (the choice of

hypothesis class) — err(hopt) _ err(h*)
e estimation error: due to finite
data + err(hopt) — err(hopt)

e optimization error: due to R
imperfect optimization 1+ err(h) — err(hope)



More on estimation error

err(fzapt) — err(hopt)
= err(hopt) — €7 (hope)
+ €77 (hope) — err(hope)
< err(hope) — €t (hope)
+ 71 (hope) — err(hopt)

< 2sup |err(h) — err(h)]
heH



Another (simpler) decomposition

err(h) = err(h) + \[err(fz) — e/r\r(l?t)])

|
Generalization gap

< err(h) + sup |err(h) — err(h)|
heH

* The training error e/r\r(fz) Is what we can compute

* Need to control the generalization gap
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Defining bias and variance @

» consider the task of learning a regression model f(x; D)

given a training set D= {(x(”,y“)),...,(x(”"),y(’”))} /

_ indicates the
* a natural measure of the error of f is dependency of

model on D
E[(y — f(x; D))?|D]

where the expectation is taken with respect to the
real-world distribution of instances



Defining bias and variance @

 further consider a fixed x
 this can be rewritten as:

E|(v—fxe; D)) |x, D|= E|(y—Ely | x])" |x, D]
+(f(x; D)~ Ely |x]) \

s, g



Defining bias and variance

now consider the expectation (over different data sets D) for the
second term

Ep|(/x; D)= Ely |x])’| =
(ED[f(x; D)|-Ely |x])2 bias

+ LB [(f(x; D)-E,[f(x; D)])zl variance

bias: if on average f(x; D) differs from E [y | x] then f(x; D) is a biased

estimator of £ [y | x]
variance: f(x; D) may be sensitive to D and vary a lot from its

expected value



Bias/variance for polynomial interpolation@

the 1st order
polynomial has high
bias, low variance

50t order polynomial
has low bias, high
variance

4% order polynomial
represents a good
trade-off

0.5

true model
O observations
i interpolation
polynomials models:
50th order
dth order
—_— 1st order




Bias/variance trade-off for k-NN regressioff)

« consider using £-NN regression to learn a model of this
surface in a 2-dimensional feature space




Bias/variance trade-off for k-NN regressioff)

bias for 1-NN darker pixels
correspond to

higher values

1

bias for 10-NN

A

variance for 10-NN



Bias/variance trade-off

« consider .~-NN applied
to digit recognition
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Bias/variance discussion @

* predictive error has two controllable components

« expressive/flexible learners reduce bias, but increase
variance

« for many learners we can trade-off these two components
(e.g. via our selection of £ in k-NN)

* the optimal point in this trade-off depends on the particular
problem domain and training set size

* this is not necessarily a strict trade-off; e.g. with ensembles
we can often reduce bias and/or variance without increasing
the other term



Bias/variance discussion

the bias/variance analysis

* helps explain why simple learners can outperform more
complex ones

* helps understand and avoid overfitting
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PAC learning

« QOverfitting happens because training error is a poor
estimate of generalization error

- Can we infer something about generalization error
from training error?

« Overfitting happens when the learner doesn'’t see
enough training instances

- Can we estimate how many instances are enough?



Learning setting

instance space X

ceC

set of instances X
set of hypotheses (models) H

set of possible target concepts C
unknown probability distribution D over instances



Learning setting

 learner is given a set D of training instances ( x, ¢(x) )
for some target concept c in C

« each instance x is drawn from distribution D
 class label ¢(x) is provided for each x

* learner outputs hypothesis # modeling ¢



True error of a hypothesis )

the true error of hypothesis 4 refers to how often % is wrong on future instances
drawn from D

error,(h)=P._, | c(x) # h(x)]

instance space X

@ h




Training error of a hypothesis )

the training error of hypothesis 4 refers to how often % is wrong on instances in
the training set D

> 5(c(x) # h(x))
error,(h) = P._,[c(x) # h(x)] = 22

| D|

Can we bound error(h) in terms of errorg(h) ?



What's successful learning?

To say that our learner L has learned a concept, should we require
errorp(h) =07

this is not realistic:

* unless we've seen every possible instance, there may be multiple
hypotheses that are consistent with the training set

» there is some chance our training sample will be unrepresentative



Probably approximately correct learning”? @

Instead, we’ll require that
» the error of a learned hypothesis 7 is bounded by some constant ¢

» the probability of the learner failing to learn an accurate hypothesis is
bounded by a constant ¢



Probably Approximately Correct (PAC) ()
learning (vaiiant, cacm 1984]

» Consider a class C of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H

« Cis PAC learnable by L using H if, for all
ce C
distributions D over X
esuchthat0<e <0.5
osuchthat0<¢ <0.5
* learner L will, with probability at least (1-6), output a hypothesis 7 € H
such that errory(h) < e in time that is polynomial in
1/
1/
n
size(c)



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Mark Craven, David Rage, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
and Pedro Domingos.
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