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Goals for the lecture

you should understand the following concepts
• the Bayesian network representation
• inference by enumeration

• the parameter learning task for Bayes nets
• the structure learning task for Bayes nets
• maximum likelihood estimation
• Laplace estimates
• m-estimates



Bayesian network example

• Consider the following 5 binary random variables:
B = a burglary occurs at the house
E = an earthquake occurs at the house
A = the alarm goes off
J = John calls to report the alarm
M = Mary calls to report the alarm

• Suppose Burglary or Earthquake can trigger Alarm, and Alarm 
can trigger John’s call or Mary’s call

• Now we want to answer queries like what is  P(B | M, J) ?  
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Bayesian network example (different parameters)
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Bayesian networks

• a BN consists of a Directed Acyclic Graph (DAG) and 
a set of conditional probability distributions

• in the DAG
• each node denotes a random variable
• each edge from X to Y represents that X directly 

influences Y
• (formally: each variable X is independent of its non-

descendants given its parents)

• each node X has a conditional probability distribution 
(CPD) representing P(X | Parents(X) )



Bayesian networks

• a BN provides a compact representation of a joint 
probability distribution. It corresponds to the assumption: 

• using the chain rule, a joint probability distribution can 
always be expressed as
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Bayesian networks

• a standard representation of the joint distribution for the Alarm
example has 25 = 32 parameters

• the BN representation of this distribution has 20 parameters
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Bayesian networks
• consider a case with 10 binary random variables

• How many parameters does a BN with the following 
graph structure have?

• How many parameters does the standard table 
representation of the joint distribution have?
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Advantages of Bayesian network representation

• Captures independence and conditional independence 
where they exist

• Encodes the relevant portion of the full joint among 
variables where dependencies exist

• Uses a graphical representation which lends insight into 
the complexity of inference



Inference



The inference task in Bayesian networks

Given: values for some variables in the network (evidence),
and a set of query variables

Do: compute the posterior distribution over the query 
variables

• variables that are neither evidence variables nor query 
variables are hidden variables

• the BN representation is flexible enough that any set can 
be the evidence variables and any set can be the query 
variables



Inference by enumeration

A

B E

MJ

• let a denote A=true, and ¬a denote A=false
• suppose we’re given the query: P(b | j, m)

“probability the house is being burglarized given that John 
and Mary both called”

• from the graph structure we can first compute:

sum over possible
values for E and A
variables (e, ¬e, a, ¬a)
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Inference by enumeration
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• now do equivalent calculation for P(¬b,  j, m)
• and determine P(b | j, m)

Inference by enumeration
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Comments on BN inference
• inference by enumeration is an exact method (i.e. it computes the exact 

answer to a given query)

• it requires summing over a joint distribution whose size is exponential in 
the number of variables

• in many cases we can do exact inference efficiently in large networks

• key insight: save computation by pushing sums inward

• in general, the Bayes net inference problem is NP-hard

• there are also methods for approximate inference – these get an 
answer which is “close”

• in general, the approximate inference problem is NP-hard also, but 
approximate methods work well for many real-world problems



Learning



The parameter learning task

• Given: a set of training instances, the graph structure of a BN

• Do: infer the parameters of the CPDs
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The structure learning task

• Given: a set of training instances

• Do: infer the graph structure (and perhaps the parameters 
of the CPDs too)
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Parameter learning and MLE

• maximum likelihood estimation (MLE)
• given a model structure (e.g. a Bayes net graph) G

and a set of data D
• set the model parameters θ to maximize P(D | G, θ)

• i.e. make the data D look as likely as possible under the 
model P(D | G, θ)



Maximum likelihood estimation review
consider trying to estimate the parameter θ (probability of heads) of a 
biased coin from a sequence of flips (1 stands for head)

What’s MLE of the parameter?

the likelihood function for θ is given by:



MLE in a Bayes net
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MLE in a Bayes net

independent parameter learning
problem for each CPD

∏ ∏

∏∏

∏








=

=

==

∈

∈

∈

i Dd

d
i

d
i

Dd i

d
i

d
i

Dd

d
n

dd

xParentsxP

xParentsxP

xxxPGDPGDL

))(|(                                        

))(|(                                        

),...,,(),|(),:(

)()(

)()(

)()(
2

)(
1θθ



Maximum likelihood estimation
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now consider estimating the CPD parameters for B and J in the alarm
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Maximum likelihood estimation
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Maximum likelihood estimation
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suppose instead, our data set was this…

do we really want to 
set this to 0?
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Laplace estimates

• instead of estimating parameters strictly from the data, 
we could start with some prior belief for each

• for example, we could use Laplace estimates

• where nv represents the number of occurrences of 
value v
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a more general form: m-estimates

number of  “virtual” instances

prior probability of value x

M-estimates



M-estimates example
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now let’s estimate parameters for B using m=4 and pb=0.25
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THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 
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