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Goals for the lecture

you should understand the following concepts
• missing data in machine learning

• hidden variables
• missing at random
• missing systematically

• the EM approach to imputing missing values in Bayes net parameter 
learning

• the Chow-Liu algorithm for structure search

• Kullback-Leibler divergence
• the Sparse Candidate algorithm



EM Algorithm



Missing data
• Commonly in machine learning tasks, some feature values are missing

• some variables may not be observable (i.e. hidden) even for training instances

• values for some variables may be missing at random: what caused the data to 
be missing does not depend on the missing data itself
• e.g. someone accidentally skips a question on an questionnaire
• e.g. a sensor fails to record a value due to a power blip

• values for some variables may be missing systematically: the probability of 
value being missing depends on the value
• e.g. a medical test result is missing because a doctor was fairly sure of a 

diagnosis given earlier test results
• e.g. the graded exams that go missing on the way home from school are 

those with poor scores



Missing data

• hidden variables; values missing at random
• these are the cases we’ll focus on
• one solution: try impute the values

• values  missing systematically
• may be sensible to represent “missing” as an explicit feature value



Imputing missing data with EM

Given:
• data set with some missing values
• model structure, initial model parameters

Repeat until convergence
• Expectation (E) step: using current model, compute 

expectation over missing values
• Maximization (M) step: update model parameters with 

those that maximize probability of the data (MLE or MAP) 



Example: EM for parameter learning
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suppose we’re given the following initial BN and training set



Example: E-step
B E A J M
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Example: E-step



B E A J M

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f:0.8 t f

t f t:0.98
f: 0.02 t t
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re-estimate probabilities
using expected counts
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f f 0.145

re-estimate probabilities for 
P(J | A) and P(M | A) in same way
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Example: M-step



Convergence of EM

• E and M steps are iterated until probabilities 
converge

• will converge to a maximum in the data likelihood 
(MLE or MAP)

• the maximum may be a local optimum, however
• the optimum found depends on starting conditions 

(initial estimated probability parameters)



Learning Structure: 
The Chow-Liu Algorithm



Learning structure + parameters

• number of structures is superexponential in the number of 
variables

• finding optimal structure is NP-complete problem
• two common options:

• search very restricted space of possible structures  
(e.g. networks with tree DAGs)

• use heuristic search (e.g. sparse candidate)



The Chow-Liu algorithm

• learns a BN with a tree structure that maximizes the 
likelihood of the training data

• algorithm
1. compute weight I(Xi, Xj) of each possible edge (Xi, Xj)
2. find maximum weight spanning tree (MST)
3. assign edge directions in MST



1. use mutual information to calculate edge weights
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The Chow-Liu algorithm



2. find maximum weight spanning tree: a maximal-weight 
tree that connects all vertices in a graph

A

B

C

D E

F G

The Chow-Liu algorithm

The Chow-Liu algo always have a complete graph, but here 
we use a non-complete graph as the example for clarity. 



Kruskal’s algorithm for finding an MST

given: graph with vertices V and edges E

Enew ← { } 
for each (u, v) in E ordered by weight (from high to low)
{

remove (u, v) from E
if adding (u, v) to Enew does not create a cycle

add (u, v) to  Enew

}
return V and Enew which represent an MST



Finding MST in Chow-Liu
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Finding MST in Chow-Liu
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Returning directed graph in Chow-Liu
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3. pick a node for the root, and assign edge directions



The Chow-Liu algorithm

• How do we know that Chow-Liu will find a tree that 
maximizes the data likelihood?

• Two key questions:
• Why can we represent data likelihood as sum of I(X;Y)

over edges?
• Why can we pick any direction for edges in the tree?



Why Chow-Liu maximizes likelihood (for a tree)

data likelihood given directed edges

we’re interested in finding the graph G that maximizes this

if we assume a tree, each node has at most one parent

edge directions don’t matter for likelihood, because MI is symmetric
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Learning Structure: 
The Sparse Candidate Algorithm



Heuristic search for structure learning

• each state in the search space represents a DAG Bayes
net structure

• to instantiate a search approach, we need to specify
• scoring function
• state transition operators
• search algorithm



Scoring function decomposability

• when the appropriate priors are used, and all instances 
in D are complete, the scoring function can be 
decomposed as follows

• thus we can
– score a network by summing terms over the nodes in 

the network

– efficiently score changes in a local search procedure
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Scoring functions for structure learning

• Can we find a good structure just by trying to maximize the 
likelihood of the data?

• If we have a strong restriction on the the structures allowed 
(e.g. a tree), then maybe.

• Otherwise, no!  Adding an edge will never decrease 
likelihood.  Overfitting likely.

),|(logmaxarg , GG GDP
G

θθ



• there are many different scoring functions for BN structure 
search

• one general approach

complexity penalty

Akaike Information Criterion (AIC):

Bayesian Information Criterion (BIC):
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Scoring functions for structure learning



Structure search operators

A

B C

D
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B C

D

add an edge
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B C

D

reverse an edge

given the current network
at some stage of the search, 
we can…

A

B C

D

delete an edge



Bayesian network search: hill-climbing

given: data set D, initial network B0

i = 0
Bbest ←B0
while stopping criteria not met
{

for each possible operator application a
{

Bnew ← apply(a, Bi)
if score(Bnew) > score(Bbest)

Bbest ← Bnew
}
++i
Bi ← Bbest

}
return Bi



Bayesian network search: the Sparse 
Candidate algorithm [Friedman et al., UAI 1999]

given: data set D, initial network B0, parameter k

i = 0
repeat
{

++i

// restrict step
select for each variable Xj a set Cj

i of candidate parents (|Cj
i| ≤ k)

// maximize step
find network Bi maximizing score among networks where           ∀Xj, 
Parents(Xj) ⊆Cj

i

} until convergence
return Bi



• to identify candidate parents in the first iteration, can compute 
the  mutual information between pairs of variables

The restrict step in Sparse Candidate
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• Suppose:

we’re selecting two candidate parents for 
A, and   I(A, C) > I(A, D) > I(A, B)

• with mutual information, the candidate 
parents for A would be C and D

• how could we get B as a candidate parent?

A

B C

D

A

D C

The restrict step in Sparse Candidate
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D

true distribution current network



• mutual information can be thought of as the KL 
divergence between  the distributions

• Kullback-Leibler (KL) divergence provides a distance 
measure between two distributions, P and Q

(assumes X and Y are independent)
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The restrict step in Sparse Candidate



• we can use KL to assess the discrepancy between the 
network’s Pnet(X, Y) and the empirical P(X, Y) 

A

B C

D

true distribution current Bayes net

The restrict step in Sparse Candidate

• can estimate Pnet(X, Y) by sampling from the network (i.e. 
using it to generate instances)

A

B C

D

The restrict step in Sparse Candidate



given: data set D, current network Bi, parameter k

for each variable Xj

{
calculate M(Xj , Xl ) for all Xj ≠ Xl such that Xl ∉ Parents(Xj)

choose highest ranking  X1 ... Xk-s where s= | Parents(Xj) |

// include current parents in candidate set to ensure monotonic
// improvement in scoring function
Cj

i =Parents(Xj) ∪ X1 ... Xk-s

} 
return { Cj

i } for all Xj

The restrict step in Sparse Candidate



The maximize step in Sparse Candidate

• hill-climbing search with add-edge, delete-edge,  reverse-
edge operators 

• test to ensure that cycles aren’t introduced into the graph



Efficiency of Sparse Candidate

possible parent 
sets for each node

changes scored on 
first iteration of 
search

changes scored on 
subsequent 
iterations

ordinary greedy 
search

greedy search w/at 
most k parents
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n = number of variables

after we apply an operator, the scores will change only for edges 
from the parents of the node with the new impinging edge
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THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 
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