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Goals for the lecture

you should understand the following concepts
e dimension reduction
» principal component analysis: definition and formulation
* two interpretations
e strength and weakness
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Big & High-Dimensional Data

» High-Dimensions = Lot of Features

Document classification
Features per document =
thousands of words/unigrams
millions of bigrams, contextual
information

Surveys - Netflix
480189 users x 17770 movies

movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6

Tom 5) ? 7 1 3 ?
George ? 7 3 1 2 5
Susan 4 1 7 5 1
Beth 4 7 2 4 2




Big & High-Dimensional Data

» High-Dimensions = Lot of Features

MEG Brain Imaging
120 locations x 500 time points
x 20 objects
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* Big & High-Dimensional Data.

» Useful to learn lower dimensional
representations of the data.



Learning Representations

PCA, Kernel PCA, ICA: Powerful unsupervised learning
techniques for extracting hidden (potentially lower
dimensional) structure from high dimensional datasets.

Useful for:
* Visualization

» More efficient use of resources
(e.g., time, memory, communication)

« Statistical: fewer dimensions - better generalization
* Noise removal (improving data quality)

* Further processing by machine learning algorithms



Principal Component Analysis (PCA)

What is PCA: Unsupervised technique for extracting
variance structure from high dimensional datasets.

S

« PCA is an orthogonal projection or transformation of the data into a
(possibly lower dimensional) subspace so that the variance of the
projected data is maximized.

o



Principal Component Analysis (PCA) @

If we rotate data, again only
one coordinate is more
important.

Intrinsically lower dimensional
than the dimension of the
ambient space. "

Only one relevant feature Both features are relevant

Question: Can we transform the features so that we only need to
preserve one latent feature?



Principal Component Analysis (PCA) ([

In case where data lies on or near a low d-dimensional linear
subspace, axes of this subspace are an effective representation of
the data.

|dentifying the axes is known as Principal Components Analysis, and can
be obtained by using classic matrix computation tools (Eigen or Singular
Value Decomposition).
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Principal Component Analysis (PCA) ()

Principal Components (PC) are orthogonal directions that
capture most of the variance in the data.

» First PC — direction of greatest variability in data.

* Projection of data points along first PC

discriminates data most along any one direction (pts
are the most spread out when we project the data on that
direction compared to any other directions).




Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal directions that
capture most of the variance in the data.

Quick reminder:
|Iv|[|=1, Point x; (D-dimensional vector) Ve oX;

Projection of x; ontovis v x;

Let u be the mean of data points, then PCA for the first PC is:
max Y;(v. x; —v-u)? s.t ||v][=1

Usually, we first centralize the data points by subtracting their
mean, then u = 0, and the optimization is simplified to:
max Y;(v- x;)? s.t. ||v]||=1

Let X = [x4,X,, ..., X, ]| (columns are the datapoints). Then:
max viXXtv s.t. ||v||=1

o



Principal Component Analysis (PCA) ({j

Principal Components (PC) are orthogonal directions
that capture most of the variance in the data.

« 18t PC — direction of greatest variability in data.

Xj Xi— (v xpv

. Xl

« 2"d PC — Next orthogonal (uncorrelated) direction of
greatest variability

(remove all variability in first direction, then find next direction of greatest
variability)

e Andsoon...
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Two Interpretations @

Consider only the first component.

Maximum Variance Direction: 1t PC is a direction v such that projection on
to this direction has maximum variance. Assume data mean=0:

Z(VTXZ')2 = vI XXy

=1

Minimum Reconstruction Error: 15t PC is a direction v such that
projection on to this direction yields minimum MSE reconstruction



Why? Pythagorean Theorem @

E.g., for the first component.
Maximum Variance Direction: 1t PC is a direction v such that projection
on to this direction has maximum variance

n T

Z(VTXZ')2 = vIXX!Tv Z |x; — (VTX?;)VH2

=1 i=1

Minimum Reconstruction Error: 15t PC is a direction v such that
projection on to this direction yields minimum MSE reconstruction

blue? + green? = black? Xj
black? is fixed (it’s just the data)

So, maximizing blue? is equivalent
to minimizing green?
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Principal Component Analysis (PCA) ([

Let vy, v,, ..., vq denote the d principal components.
ViV =0,i# ] andVi' Vi =1,

Assume data is centered (we extracted the sample mean).
Let X = [x4,X,, ..., X5] (columns are the datapoints)

First PC: find vector that maximizes sample variance of projected data

Z(VTXZ')Z —vIXXTvy

i=1
n”@x vIXXTy st. viv=1

Wrap constraints into the

. : T T, T
Lagrangian: maxy v XX*v —Av'v Sheeve funeien

d/0v =20 (XXL —ADv=0 = (XXT)yv = Av




Principal Component Analysis (PCA) ()

(XxXT)v = Av, so v (the first PC) is the eigenvector of
sample correlation/covariance matrix X X’

The variance of projection v’ X XTv = Aviv =1

Thus, the eigenvalue 1 denotes the amount of variability
captured along that dimension (aka amount of energy along
that dimension).

Eigenvalues 4, = 4, = 43 = -

 The 1t PC v, is the first eigenvector of the sample covariance matrix
X X' associated with the largest eigenvalue. The variance of the
projected data on it is just the largest eigenvalue.

« The 2nd PC v, is the second eigenvector of the sample covariance
matrix X X' associated with the second largest eigenvalue. The variance
of the projected data on it is just the second largest eigenvalue.

e Andsoon...



Principal Component Analysis (PCA) ()

« So, the new axes (the PCs) are the eigenvectors of the matrix of
sample correlations X X7 of the centralized data.

X2 'tD

v

X1

« Geometrically: centering followed by rotation (all are linear
transformation)

Key computation: eigendecomposition of XX* (closely related
to SVD of X).



Dimensionality Reduction using PCA

The eigenvalue A denotes the amount of variability captured along that
dimension (aka amount of energy along that dimension).

Zero eigenvalues indicate no variability along those directions => data
lies exactly on a linear subspace

Only keep data projections onto top principal components, say vy, ..., v4

Original representation Transformed representation
Data point projection
xl — (xll,,xlD) (v]_ 'xi)"')vd .xl)

D-dimensional vector d-dimensional vector
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Dimension Reduction using PCA

In high-dimensional problems, data sometimes lies near a linear
subspace, as noise introduces small variability

Only keep data projections onto principal components with large
eigenvalues

Can ignore the components of smaller significance.
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Might lose some info, but if eigenvalues are small, do not lose much



Chart1

		PC1

		PC2

		PC3

		PC4

		PC5

		PC6

		PC7

		PC8

		PC9

		PC10



Variance (%)

22.156453

16.890559

13.656958

7.639906

4.187585

3.925319

2.988095

2.817876

2.475854

2.392004



PCAvar_BTallgenes2

		PC1		0.22156453		22.156453

		PC2		0.16890559		16.890559

		PC3		0.13656958		13.656958

		PC4		0.07639906		7.639906

		PC5		0.04187585		4.187585

		PC6		0.03925319		3.925319

		PC7		0.02988095		2.988095

		PC8		0.02817876		2.817876

		PC9		0.02475854		2.475854

		PC10		0.02392004		2.392004





PCAvar_BTallgenes2
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Example: faces

Eigenfaces
from 7562
Images:

top left image
IS linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)

Can represent a face image using just 15 numbers!



PCA Discussion

Strengths

Eigenvector method

No tuning of the parameters

No local optima

Weaknesses

Limited to second order statistics

Limited to linear projections



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Mark Craven, David Rage, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
and Pedro Domingos.
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