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Goals for the lecture

you should understand the following concepts
• dimension reduction
• principal component analysis: definition and formulation
• two interpretations
• strength and weakness
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Introduction



• High-Dimensions = Lot of Features

Document classification
Features per document = 

thousands of words/unigrams
millions of bigrams,  contextual 
information

Surveys - Netflix
480189 users x 17770 movies

Big & High-Dimensional Data



• High-Dimensions = Lot of Features

MEG Brain Imaging
120 locations x 500 time points 
x 20 objects

Big & High-Dimensional Data

Or any high-dimensional image data



• Useful to learn lower dimensional 
representations of the data.

• Big & High-Dimensional Data.



PCA, Kernel PCA, ICA: Powerful unsupervised learning 
techniques for extracting hidden (potentially lower 
dimensional) structure from high dimensional datasets.

Learning Representations

Useful for:
• Visualization 

• Further processing by machine learning algorithms

• More efficient use of resources 
(e.g., time, memory, communication)

• Statistical: fewer dimensions  better generalization

• Noise removal (improving data quality)



Principal Component Analysis (PCA)

What is PCA: Unsupervised technique for extracting 
variance structure from high dimensional datasets.

• PCA  is an orthogonal projection or transformation of the data into a 
(possibly lower dimensional) subspace so that the variance of the 
projected data is maximized.



Principal Component Analysis (PCA)

Both features are relevant Only one relevant feature

Question: Can we transform the features so that we only need to 
preserve one latent feature? 

Intrinsically lower dimensional 
than the dimension of the 
ambient space.

If we rotate data, again only 
one coordinate is more 
important.



Principal Component Analysis (PCA)

In case where data  lies on or near a low d-dimensional linear 
subspace, axes of this subspace are an effective representation of 
the data.

Identifying the axes is known as Principal Components Analysis, and can 
be obtained by using classic matrix computation tools (Eigen or Singular 
Value Decomposition).



Formulation



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal directions that 
capture most of the variance in the data.

• Projection of data points along first PC 
discriminates data most along any one direction (pts
are the most spread out when we project the data on that 
direction compared to any other directions).

• First PC – direction of greatest variability in data.



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal directions that 
capture most of the variance in the data.

xi v

v ⋅ xi||v||=1, Point xi (D-dimensional vector)

Projection of xi onto v is  v ⋅ xi

Quick reminder:

Let 𝜇𝜇 be the mean of data points, then PCA for the first PC is: 
max ∑𝑖𝑖 v ⋅ xi − v ⋅ 𝜇𝜇 2 s.t. ||v||=1

Usually, we first centralize the data points by subtracting their 
mean, then 𝜇𝜇 = 0, and the optimization is simplified to:  
max ∑𝑖𝑖 v ⋅ xi 2 s.t. ||v||=1

Let X = [x1, x2, … , xn] (columns are the datapoints). Then: 
max v𝑡𝑡𝑋𝑋𝑋𝑋𝑡𝑡v s.t. ||v||=1



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal directions 
that capture most of the variance in the data.

xi − v ⋅ xi vxi

v ⋅ xi

• 1st PC – direction of greatest variability in data.

• 2nd PC – Next orthogonal (uncorrelated) direction of 
greatest variability

(remove all variability in first direction, then find next direction of greatest 
variability)

• And so on …



Two Interpretations



Two Interpretations

Maximum Variance Direction: 1st PC is a direction v such that projection on 
to this direction has maximum variance. Assume data mean=0: 

Minimum Reconstruction Error: 1st PC is a direction v such that 
projection on to this direction yields minimum MSE reconstruction 

xi v

v ⋅ xi

Consider only the first component.



Why? Pythagorean Theorem

xi v

v ⋅ xi

blue2 + green2 = black2

black2 is fixed (it’s just the data)

So, maximizing blue2 is equivalent 
to minimizing green2

Maximum Variance Direction: 1st PC is a direction v such that projection 
on to this direction has maximum variance

Minimum Reconstruction Error: 1st PC is a direction v such that 
projection on to this direction yields minimum MSE reconstruction 

E.g., for the first component.



Computation



Principal Component Analysis (PCA)

Let v1, v2, …, vd denote the d principal components.

Wrap constraints into the 
objective function

vi ⋅ vj = 0, i ≠ j

First PC: find vector that maximizes sample variance of projected data

and vi ⋅ vi = 1,

Let X = [x1, x2, … , xn] (columns are the datapoints)
Assume data is centered (we extracted the sample mean).



Principal Component Analysis (PCA)

X XT v = λv , so v (the first PC) is the eigenvector of 
sample correlation/covariance matrix 𝑋𝑋 𝑋𝑋𝑇𝑇

The variance of projection v𝑇𝑇𝑋𝑋 𝑋𝑋𝑇𝑇v = 𝜆𝜆v𝑇𝑇v = 𝜆𝜆

Thus, the eigenvalue 𝜆𝜆 denotes the amount of variability 
captured along that dimension (aka amount of energy along 
that dimension).  

Eigenvalues 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ 𝜆𝜆3 ≥ ⋯
• The 1st PC 𝑣𝑣1 is the first eigenvector of the sample covariance matrix 

𝑋𝑋 𝑋𝑋𝑇𝑇 associated with the largest eigenvalue. The variance of the 
projected data on it is just the largest eigenvalue.

• The 2nd PC 𝑣𝑣2 is the second eigenvector of the sample covariance 
matrix 𝑋𝑋 𝑋𝑋𝑇𝑇 associated with the second largest eigenvalue. The variance 
of the projected data on it is just the second largest eigenvalue.

• And so on …



x1

x2

• So, the new axes (the PCs) are the eigenvectors of the matrix of 
sample correlations 𝑋𝑋 𝑋𝑋𝑇𝑇 of the centralized data.

• Geometrically: centering followed by rotation (all are linear 
transformation)

Principal Component Analysis (PCA)

Key computation: eigendecomposition of 𝑋𝑋𝑋𝑋𝑇𝑇 (closely related 
to SVD of 𝑋𝑋).



Dimensionality Reduction using PCA

xi v
vTxi

The eigenvalue 𝜆𝜆 denotes the amount of variability captured along that 
dimension (aka amount of energy along that dimension).

Zero eigenvalues indicate no variability along those directions => data 
lies exactly on a linear subspace

Only keep data projections onto top principal components, say v1, … , vd

Original representation Transformed representation

Data point
𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝐷𝐷)

projection
(𝑣𝑣1 ⋅ 𝑥𝑥𝑖𝑖 , … , 𝑣𝑣𝑑𝑑 ⋅ 𝑥𝑥𝑖𝑖)

D-dimensional vector d-dimensional vector



Application Examples



Dimension Reduction using PCA

In high-dimensional problems, data sometimes lies near a linear 
subspace, as noise introduces small variability

Only keep data projections onto principal components with large
eigenvalues
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Can ignore the components of smaller significance. 

Might lose some info, but if eigenvalues are small, do not lose much


Chart1

		PC1

		PC2

		PC3

		PC4

		PC5

		PC6

		PC7

		PC8

		PC9

		PC10



Variance (%)

22.156453

16.890559

13.656958

7.639906

4.187585

3.925319

2.988095

2.817876

2.475854

2.392004



PCAvar_BTallgenes2

		PC1		0.22156453		22.156453

		PC2		0.16890559		16.890559

		PC3		0.13656958		13.656958

		PC4		0.07639906		7.639906

		PC5		0.04187585		4.187585

		PC6		0.03925319		3.925319

		PC7		0.02988095		2.988095

		PC8		0.02817876		2.817876

		PC9		0.02475854		2.475854

		PC10		0.02392004		2.392004





PCAvar_BTallgenes2

		



Variance (%)





Can represent a face image using just 15 numbers! 



PCA Discussion

Strengths
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Eigenvector method

No tuning of the parameters

No local optima

Weaknesses

Limited to second order statistics

Limited to linear projections



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 
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