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Goals for the lecture

you should understand the following concepts
« value functions and value iteration (review)
« Q functions and Q learning (review)
« exploration vs. exploitation tradeoff
» compact representations of Q functions
« optional: reinforcement learning example



Value function for a policy

* given a policy n : S — A4 define

according to & starting at state s

(0.0)
7 (S) _ nyE[,;] assuming action sequence chosen
=0

« we want the optimal policy " where

n =argmax_V”*(s) foralls

we’ll denote the value function for this optimal policy as V*(s)



Q function and Bellman equation @

define a new function, closely related to '*

O(s,a) « E[r(s,a)]+ ¥, [V (s")]

Key property (Bellman equation):

7 (s) < argmax, O(s,a) V (s) < max_O(s,a)

If we know V*(s), (s, a), and P(s, | s, ;, a, ;) we can compute n*(s)



Value iteration for learning 7 (s)

initialize V(s) arbitrarily
loop until policy good enough

{

loop fors €8S

{

loop fora €4

{ O(s,a) « r(s,a)+ Q/ZP(S'| s,a)V(s'")

} s'eS

V(s)« max, (J(s,a)



O learning update rule

for each s, a initialize table entry  (O(s,a) < 0
observe current state s
do forever
select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

Q(s,a) < r+ymax,, Q(S',a')
s <«—s’



QJsvs. l'’s

-
°)
.

Learning: how to learn the Q/V functions?
Inference: Which action do we choose when we're in a given state?

* I’s (model-based)
* need to have a ‘next state’ function to generate all possible
states
* 0’s (model-free)
* need only know which actions are legal
» choose the action with highest O value



Exploration vs. Exploitation

* in order to learn about better alternatives, we shouldn’t always follow
the current policy (exploitation)

« sometimes, we should select random actions (exploration)

* one way to do this: select actions probabilistically according to:

A

CQ(Saai)
P(ai |S) —

CQ(s,aj)
J

where ¢ > 0 is a constant that determines how strongly selection
favors actions with higher QO values

o



O learning with a table

As described so far, Q learning entails filling in a huge table

states
Sog  S; 8 Sy N\
a
a,
| . Atable is a very
actions 3. .. (s, az) verbose way to
represent a function
a
J




Representing O functions more compactly @

We can use some other function representation (e.g. a neural net)
to compactly encode a substitute for the big table

encoding of <

the state (s)
\
each input unit encodes or could have one net
a property of the state for each possible action

(e.g., a sensor value)



Why use a compact QO function?

Full O table may not fit in memory for realistic problems

2. Can generalize across states, thereby speeding up
convergence
i.e. one instance ‘fills’ many cells in the Q table

Notes

1. When generalizing across states, cannot use o=1

2. Convergence proofs only apply to O tables

3. Some work on bounding errors caused by using compact

representations (e.g. Singh & Yee, Machine Learning 1994)

o



O tables vs. O nets

Given: 100 Boolean-valued features
10 possible actions

Size of O table
10 x 2190 entries

Size of O net (assume 100 hidden units)
100 x 100 + 100 x 10 = 11,000 weights

weights between weights between
inputs and HU's HU’s and outputs




Representing O functions more compactly @

* we can use other regression methods to represent O functions
k-NN

regression trees
support vector regression
etc.



O learning with function approximation

1. measure sensors, sense state s,

2. predict Q (s,,a)for each action a
3. select action a to take (with randomization to ensure
exploration)
4. apply action «a in the real world
5. sense new state s, and immediate reward r
. . .. '
6. calculate action a’ that maximizes Qn(sl,a )
/. train with new instance

X =5,

y< (- a)Q(SO,a) + a[r + y max Q(Sl,a')]

Calculate Q-value you would have put into Q-table, and use
it as the training label
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ML example: reinforcement learning to control @
an autonomous helicopter

L

Hurricane

video of Stanford University autonomous helicopter from http://heli.stanford.edu/



Stanford autonomous helicopter

sensing the helicopter’s state
« orientation sensor
accelerometer
rate gyro
magnetometer

 GPS receiver (“2cm accuracy as long as its antenna is pointing
towards the sky”)

e ground-based cameras

actions to control the helicopter

Anfitorgue

Padals
Collective



Experimental setup for helicopter

1. Expert pilot demonstrates the airshow several times

T
e

2. Learna reWard functon based on desired trajectory

3. Learn a dynamics model

4. Find the optimal control policy for learned reward and dynamics
model

5. Autonomously fly the airshow

e

6. Learn an improved dynamics model. Go back to step 4



Learning dynamics model P(s,. ;| s,, a) @

- state represented by helicopter’s
position ( X,V, z)
velocity (J'C,}",Z')

angular velocity (a)x, a)y, a)Z)

» action represented by manipulations of 4 controls

(ul,uz,u3,u4)

« dynamics model predicts accelerations as a function of current state
and actions

« accelerations are integrated to compute the predicted next state



Learning dynamics model P(s,. ;| s,, a) @

we

X"=AX"+ g’ +w,

ﬂ"

O X
' = Ay + g’ + D, +w,,
e J-'y Oy

b

. * b
dynamics = AZ + g_: + C—'l“nl + 1'..}4 + wzj
model \
®’=Bw +Cu +D +w,
N b
y = By0, +Cu, + D, +w, ,
@’=Bw +Cu, +D,+w, .

A, B, C, D represent model parameters
g represents gravity vector

w’s are random variables representing noise and unmodeled effects

linear regression task!



Learning a desired trajectory @

* repeated expert demonstrations are often suboptimal in different ways
* given a set of M demonstrated trajectories

for j=0,...N-1k=0,.,M-1

k
| TJ
yj_k
J

action on ;" step of trajectory k state on ;i step of trajectory &

 try to infer the implicit desired trajectory

o
S

z,=| | fort=0,.,H
ut




Learning a desired trajectory

colored lines: demonstrations of two loops
black line: inferred trajectory
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Figure from Coates et al., CACM 2009



Learning reward function

« EM is used to infer desired trajectory from set of demonstrated
trajectories

« The reward function is based on deviations from the desired trajectory



Finding the optimal control policy V)

» finding the control policy is a reinforcement learning task

n’ < argmax_E Zr(st,a) | 7
t

 RL learning methods described earlier don’t quite apply because state and
action spaces are both continuous

« A special type of Markov decision process in which the optimal policy can be
found efficiently

» reward is represented as a linear function of state and action vectors

» next state is represented as a linear function of current state and action
vectors

« They use an iterative approach that finds an approximate solution because the
reward function used is quadratic



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Mark Craven, David Rage, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
and Pedro Domingos.
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