
Ensemble Methods
CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts
• ensemble
• bootstrap sample
• bagging
• boosting
• random forests
• error correcting output codes

2

What is an ensemble?

a set of learned models whose individual decisions are combined in some way
to make predictions for new instances

3

When can an ensemble be more accurate?
• when the errors made by the individual predictors are (somewhat)

uncorrelated, and the predictors’ error rates are better than guessing (<
0.5 for 2-class problem)

• consider an idealized case…

error rate of ensemble
is represented by
probability mass in this box =
0.026

Figure from Dietterich, AI Magazine, 19974

How can we get diverse classifiers?

• In practice, we can’t get classifiers whose errors are completely
uncorrelated, but we can encourage diversity in their errors by

• choosing a variety of learning algorithms
• choosing a variety of settings (e.g. # hidden units in neural

nets) for the learning algorithm
• choosing different subsamples of the training set (bagging)
• using different probability distributions over the training

instances (boosting, skewing)
• choosing different features and subsamples (random forests)

5

Bagging (Bootstrap Aggregation)
[Breiman, Machine Learning 1996]

learning:
given: learner L, training set D = {〈x1, y1〉… 〈xm, ym〉 }
for i ← 1 to T do

D(i) ← m instances randomly drawn with replacement from D
hi ← model learned using L on D(i)

classification:
given: test instance x
predict y ← plurality_vote(h1(x) … hT(x))

regression:
given: test instance xt
predict y ← mean(h1(x) … hT(x))

6

Bagging

• each sampled training set is a bootstrap replicate
• contains m instances (the same as the original training set)
• on average it includes 63.2% of the original training set
• some instances appear multiple times

• can be used with any base learner

• works best with unstable learning methods: those for which small
changes in D result in relatively large changes in learned models,
i.e., those that tend to overfit training data

7

Empirical evaluation of bagging with C4.5

Fi
gu

re
 fr

om
 D

ie
tte

ric
h,

 A
I M

ag
az

in
e,

 1
99

7

Bagging reduced error of C4.5 on most data sets; wasn’t harmful on any

8

Boosting

• Boosting came out of the PAC learning community

• A weak PAC learning algorithm is one that cannot PAC learn for
arbitrary ε and δ, but it can for some: its hypotheses are at least
slightly better than random guessing

• Suppose we have a weak PAC learning algorithm L for a concept
class C. Can we use L as a subroutine to create a (strong) PAC
learner for C?

• Yes, by boosting! [Schapire, Machine Learning 1990]
• The original boosting algorithm was of theoretical interest, but

assumed an unbounded source of training instances

• A later boosting algorithm, AdaBoost, has had notable practical
success

9

AdaBoost
[Freund & Schapire, Journal of Computer and System Sciences, 1997]

given: learner L, # stages T, training set D = {〈x1, y1〉… 〈xm, ym〉 }

for all i : w1(i) ← 1/m // initialize instance weights
for t ← 1 to T do

for all i : pt(i) ← wt(i) / (Σj wt(j)) // normalize weights
ht ← model learned using L on D and pt

εt ← Σi pt(i)(1 - δ(ht(xi), yi)) // calculate weighted error
if εt > 0.5 then

T ← t – 1
break

βt ← εt / (1 – εt) // lower error, smaller βt
for all i where ht(xi) = yi // downweight correct examples

wt+1(i) ← wt(i) βt

return:

10

∑
=









=

T

t
t

t
y yhh

1
)),((1logmaxarg)(xx δ

β

Implementing weighted instances with AdaBoost

• AdaBoost calls the base learner L with probability distribution pt
specified by weights on the instances

• there are two ways to handle this
1. Adapt L to learn from weighted instances; straightforward for

decision trees and naïve Bayes, among others
2. Sample a large (>> m) unweighted set of instances

according to pt ; run L in the ordinary manner

11

Empirical evaluation of boosting with C4.5

Figure from Dietterich, AI Magazine, 1997

12

Bagging and boosting with C4

Fi
gu

re
 fr

om
 D

ie
tte

ric
h,

 A
I M

ag
az

in
e,

 1
99

7

13

Empirical study of bagging vs. boosting
[Opitz & Maclin, JAIR 1999]

• 23 data sets
• C4.5 and neural nets as base learners
• bagging almost always better than single

decision tree or neural net
• boosting can be much better than bagging
• however, boosting can sometimes reduce accuracy

(too much emphasis on outliers?)

14

Random forests
[Breiman, Machine Learning 2001]

given: candidate feature splits F, training set D = {〈x1, y1〉…〈xm, ym〉}
for i ← 1 to T do

D(i) ← m instances randomly drawn with replacement from D
hi ← randomized decision tree learned with F, D(i)

randomized decision tree learning:
to select a split at a node

R ← randomly select (without replacement) f feature splits from F
(where f << |F|)

choose the best feature split in R
do not prune trees

classification/regression:
as in bagging

15

Learning models for multi-class problems
• consider a learning task with k > 2 classes
• with some learning methods, we can learn one model to predict the k classes

• an alternative approach is to learn k models; each represents one class
vs. the rest

• but we could learn models to represent other encodings as well

16

Error correcting output codes
[Dietterich & Bakiri, JAIR 1995]

• ensemble method devised specifically for problems with many classes
• represent each class by a multi-bit code word
• learn a classifier to represent each bit function

17

Classification with ECOC

• to classify a test instance x using an ECOC ensemble with T classifiers
1. form a vector h(x) = 〈h1(x) … hT(x) 〉 where hi(x) is the prediction

of the model for the ith bit
2. find the codeword c with the smallest Hamming distance to h(x)
3. predict the class associated with c

recall, ⎣x⎦ is the largest
integer not greater than x

• if the minimum Hamming distance between any pair of codewords is d,
we can still get the right classification with single-bit errors

18





 −

2
1d

Error correcting code design
a good ECOC should satisfy two properties

1. row separation: each codeword should be well separated in
Hamming distance from every other codeword

2. column separation: each bit position should be uncorrelated
with the other bit positions

7 bits apart

6 bits apart
19

errors 3
2

17correct can code thisso 7 =



 −

=d

ECOC evaluation with C4.5

Figure from Bakiri & Dietterich, JAIR, 1995

20

ECOC evaluation with neural nets

Figure from Bakiri & Dietterich, JAIR, 1995

21

Other Ensemble Methods

• Use different parameter settings with same algorithm
• Use different learning algorithms
• Instead of voting or weighted voting, learn the combining

function itself
• Called “Stacking”
• Higher risk of overfitting
• Ideally, train arbitrator function on different subset of data than used

for input models
• Naïve Bayes is weighted vote of stumps

22

Comments on ensembles

• They very often provide a boost in accuracy over base learner

• It’s a good idea to evaluate an ensemble approach for almost any
practical learning problem

• They increase runtime over base learner, but compute cycles are
usually much cheaper than training instances

• Some ensemble approaches (e.g. bagging, random forests) are
easily parallelized

• Prediction contests (e.g. Kaggle, Netflix Prize) usually won by
ensemble solutions

• Ensemble models are usually low on the comprehensibility scale,
although see work by

[Craven & Shavlik, NIPS 1996]
[Domingos, Intelligent Data Analysis 1998]
[Van Assche & Blockeel, ECML 2007]

23

THANK YOU
Some of the slides in these lectures have been adapted/borrowed

from materials developed by Mark Craven, David Page, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,

and Pedro Domingos.

	Ensemble Methods
	Goals for the lecture
	What is an ensemble?
	When can an ensemble be more accurate?
	How can we get diverse classifiers?
	Bagging (Bootstrap Aggregation)�[Breiman, Machine Learning 1996]
	Bagging
	Empirical evaluation of bagging with C4.5
	Boosting
	AdaBoost�[Freund & Schapire, Journal of Computer and System Sciences, 1997]�
	Implementing weighted instances with AdaBoost
	Empirical evaluation of boosting with C4.5
	Bagging and boosting with C4
	Empirical study of bagging vs. boosting�[Opitz & Maclin, JAIR 1999]
	Random forests�[Breiman, Machine Learning 2001]
	Learning models for multi-class problems
	Error correcting output codes�[Dietterich & Bakiri, JAIR 1995]
	Classification with ECOC
	Error correcting code design�
	ECOC evaluation with C4.5
	ECOC evaluation with neural nets
	Other Ensemble Methods
	Comments on ensembles
	THANK YOU

