Madison

CS 760@UW.

Goals for the lecture

you should understand the following concepts
* k-NN classification
* k-NN regression
» edited nearest neighbor
* locally weighted regression
* inductive bias (hypothesis space bias, preference bias)

Nearest-neighbor classification @

learning stage
e given a training set (x(9, y(), ..., (x™), y(™), do nothing
(it's sometimes called a lazy learner)

classification stage
e given: an instance x to classify
» find the training-set instance x® that is most similar to x(@
* return the class value %

The decision regions

o

Voronoi diagram: each polyhedron indicates the region of feature space that

is in the nearest neighborhood of each training instance

-

|
/b‘j;}f
-] | °
TQ:

Bas

—l

k-nearest-neighbor classification @

classification task
e given: an instance x to classify
« find the £ training-set instances (x(, y)), ..., (x®, y®) that
are most similar to x@
* return the class value

1 fa=>b

k
P« argmax Y o(v, y"” S(a,b) =
’ : XZ v,y (a,5) {0 otherwise

vevalues(Y) ;=1

(i.e. return the class that have the most instances)

How can we determine distance @

suppose all features are discrete

 Hamming distance: count the number of features for
which two instances differ

suppose all features are continuous
 Euclidean distance:

d(X(i),X(j)) _ \/2()#) _ xf,j))z where xﬁj) represents the f-th feature of @
f

 Manhattan distance:

d(X(i), X(j)) _ Z
f

Q) ()
g xf‘

How can we determine distance @

* if we have a mix of discrete/continuous features:

if f is continuous

Xr
d(x®,x0)) = E 3 .
kl 6(;), ;J)) if f is discrete

(1,0 _ (j)|

» typically want to apply to continuous features some type of
normalization (values range 0 to 1) or standardization (values
distributed according to standard normal)

* many other possible distance functions we could use ...

Standardizing numeric features @

given the training set D, determine the mean and stddev for feature x;

1O (@) 2
m;(’ci _“i)

D]

1
_ (d)
=57 0,
d=1

2
|

standardize each value of feature x; as follows

do the same for test instances, using the same u; and o; derived from
the training data

*l.

k-nearest-neighbor regression @

learning stage
e given a training set (x(9, y(), ..., (x™), y(™), do nothing

prediction stage
e given: an instance x@ to make a prediction for
« find the £ training-set instances (x(, y)), ..., (x®, y®) that
are most similar to x@
* return the value

N ISy
R
kS

Distance-weighted nearest neighbor

We can have instances contribute to a prediction
according to their distance from x@

classification:
A l
y «—argmax > w, o(v,y") W, = :
vevalues(Y) ;=1 l I d(x(Q): x(l))z
regression:

k

Zwi y(i)

5 i=1
120

2

i=1

Irrelevant features @

here’s a case in which there consider the effect of an
is one relevant feature x, and a 1- irrelevant feature x, on distances and
NN rule classifies each instance nearest neighbors
correctly
@ P
®
o ©
X2
,,,,,,,, L
o
PY ®
—0—0000 o0 0 ¢

Locally weighted regression

« one way around this limitation is to weight features
differently

* Jocally weighted regression is one nearest-neighbor
variant that does this

prediction task
 given: an instance x@ to make a prediction for

« find the % training-set instances (x, y()), ..., (x®, y®)
that are most similar to x@

 return the value

&) =w, +wx? +w,x? +... +w x'?

Locally weighted regression @

prediction/learning task
- find the weights w; for each x@ by minimizing

E(X(q)) — Zk:(f(x(i)) _ y(i))z

» this is done at prediction time, specifically for x@
« can do this using gradient descent (to be covered soon)

Speeding up A~-NN @

* ki-NN is a “lazy” learning algorithm — does virtually nothing at
training time

* but classification/prediction time can be costly when the
training set is large

» two general strategies for alleviating this weakness

« don’t retain every training instance (edited nearest
neighbor)

* use a smart data structure to look up nearest neighbors
(e.g. a k-d tree)

Edited instance-based learning @

* select a subset of the instances that still provide accurate classifications

 Incremental deletion
start with all training instances in memory
for each training instance (x, y®)
if other training instances provide correct classification for (x®, y®)
delete it from the memory

 iIncremental growth
start with an empty memory
for each training instance (x®, y®)
if other training instances in memory don’t correctly classify (x), y)
add it to the memory

IONS

at

s

Im

L s
Lol
"
qv
i e
yeiared &
@))
¢
D
oo
e
)
....Ww,

Strengths of instance-based learning @

* simple to implement

* “training” is very efficient

 adapts well to on-line learning

* robust to noisy training data (when £ > 1)
« often works well in practice

Limitations of instance-based learning @

* sensitive to range of feature values

* sensitive to irrelevant and correlated features, although ...

* there are variants (such as locally weighted regression)
that learn weights for different features

 |ater we’ll talk about feature selection methods

» classification/prediction can be inefficient, although edited
methods and i-d trees can help alleviate this weakness

» doesn’t provide much insight into problem domain because
there is no explicit model

Inductive bias

* jnductive bias is the set of assumptions a learner uses to
be able to predict y, for a previously unseen instance x;

 two components

* hypothesis space bias: determines the models that can
be represented

» preference bias: specifies a preference ordering within
the space of models

* in order to generalize (i.e. make predictions for previously
unseen instances) a learning algorithm must have an
iInductive bias

Consider the inductive bias of DT @
and 4-NN learners

learner hypothesis space bias preference bias

k-NN Voronoi decomposition determined instances in neighborhood
by nearest neighbors belong to same class

i

=t

- k-d Tree: Data Structure for
Finding Nearest Neighbors

: =

k-d trees

a k-d tree is similar to a decision tree except that each internal node

» stores one instance

« splits on the median value of the feature having the highest variance

12 ¢b

10 [------ oy

X, >6
/f\
x,> 10 X,>5
C h

Finding nearest neighbors with a k-d tree@

e use branch-and-bound search

* priority queue stores
* nodes considered
* lower bound on their distance to query instance

* lower bound given by distance using a single feature

e average case: O(log,m)
worst case: O(m) where m is the size of the training-set

Finding nearest neighbors in a k-d tree

NearestNeighbor(instance x@)
PQ=1{} // minimizing priority queue
best dist = « // smallest distance seen so far
PQ.push(root, 0)
while PQ is not empty
(node, bound) = PQ.pop();
if (bound = best_dist)
return best_node.instance I/l nearest neighbor found
dist = distance(x@, node. instance)
if (dist < best_dist)
best dist = dist
best node = node
if (¢9[node.feature] — node.threshold > 0)
PQ.push(node.left, x?[node.feature] — node.threshold)
PQ.push(node.right, 0)
else
PQ.push(node.left, 0)
PQ.push(node.right, node. threshold - x@ [node.feature])
return best_node. instance

o

k-d tree example (Manhattan distance)

3 2 R S
i j
_______________ :
________ d______i
A SR
e ! | h
"""""""" l i
[\
q f :
I L
1 :E
0 2 [8 10 12

given query

o

(9) =
X = (2, 3) s
/f\
x,> 10 X,>5
/C\ /h\
X, > x>9
¢ g

7

d

4 x >3
b
X, > 8 x2>/ll\lj
a

x,>10
i
n/\n D/xz\>11.5
D/j\n

k-d tree example (Manhattan distance)

12

10

A — |

given query
x@ = (2, 3)

o

distance

best distance

best node

priority queue

e}

(f, 0)

k-d tree example (Manhattan distance) @

12 *b

R T

given query
x@ = (2, 3)

x,>4 x >3 x>9 x,>10
e b g 1
n/> 8 x2>/1l\lj n/\n /xz\>11.5

pop f 4.0

distance best distance best node priority queue
0 (f, 0)
4.0 f

k-d tree example (Manhattan distance) @

given query

: ! ! x@ = (2, 3) X, >6
12 *b ! L] £
-__-k--‘i : : ‘-J /\
L o - Fy
| | x,>10 X,>5
R R A P P
6 x, >4 x, >3 x,>9 x> 10
. ettt e * T e b g i
B : D/\ Aﬂ n/\n D/\
¢ :
g 1 f : x,>8 x,> 11 x,>11.5
.‘g d a]
" .
6 2 4 6 & 10 12 14 g/\n n/\.:, n/\.:,
distance best distance best node priority queue
0 (f, 0)

pop f 4.0 4.0 f (c, 0)

k-d tree example (Manhattan distance) @

given query

: ! ! x@ = (2, 3) X, >6
12 *b ! L] £
-__-k--‘i : : ‘-J /\
L o - Fy
| | x,>10 X,>5
R R A P P
6 x, >4 x, >3 x,>9 x> 10
. ettt e * T e b g i
B : D/\ Aﬂ n/\n D/\
¢ :
g 1 f : x,>8 x,> 11 x,>11.5
.‘g d a]
" .
6 2 4 6 & 10 12 14 g/\n n/\.:, n/\.:,
distance best distance best node priority queue
0 (f, 0)

pop f 4.0 4.0 f (c, 0) (h, 4)

k-d tree example (Manhattan distance)

12 *b

L o

o

given query

(q9) =
X9 = (2, 3) e
/f\
x,>10 X,>5
/C\ /h\
x,>4 x >3 x>9 x,>10

distance best distance best node priority queue
°0 (f, 0)
pop f 4.0 4.0 f (c, 0) (h, 4)
pop ¢ 10.0 4.0 f

k-d tree example (Manhattan distance)

12 *b

L o

o

given query
x@ = (2, 3) 56
/f\
x,> 10 X,>5
/C\ /h\
x,>4 x >3 x>9 x,>10

distance best distance best node priority queue
°0 (f, 0)
pop f 4.0 4.0 f (c, 0) (h, 4)
pop ¢ 10.0 4.0 f (e,0) (h,4) (b,7)

k-d tree example (Manhattan distance)

12 *b

L o

o

given query
x@ = (2, 3) 56
/f\
x,> 10 X,>5
/C\ /h\
x,>4 x >3 x>9 x,>10

distance best distance best node priority queue
°0 (f, 0)
pop f 4.0 4.0 f (c, 0) (h, 4)
pop ¢ 10.0 4.0 f (e, 0) (h,4) (b,7)
pOp € 1.0 1.0 c

k-d tree example (Manhattan distance) @

given query
! : : x@ = (2, 3) x> 6
12 b ! L - ¢
-__-k- 15 E EIi.) /\
10 f------d--- o - ®
| : x,>10 X,>5
T ra : I /C\ /h\
6 i X, >4 x; >3 x;>9 x> 10
e b e .] < b g i
.
5 1 ' f \j/>>8 x2>/11\n /\1 D/xz\>11.5
: d a j
0
0o 2 4 6 0 12 D/\.:, D/\,:, n/\n
distance best distance best node priority queue
0 (f, 0)
pop f 4.0 4.0 f (c, Q) (h, 4)
pop ¢ 10.0 4.0 f (e, 0) (h,4) (b,7)

k-d tree example (Manhattan distance) @

given query
! : : x@ = (2, 3) x> 6
12 *b ! L .. £
et U R S —
w r------"--- .- e
| | x,>10 X,>5
T ra : I /C\ /h\
6 i X, >4 x; >3 x;>9 x> 10
. _"__.“"_"“:r """""" * T e b g i
g £ X, > 8 x,> 11 x,>11.5
| d 2 j
0 4 6 0 12 14
distance best distance best node priority queue
0 (f, 0)
pop f 4.0 4.0 f (c, Q) (h, 4)
pop ¢ 10.0 4.0 f (e, 0) (h,4) (b,7)
pop e 1.0 1.0 e (d, 1) (h,4) (b, 7)
pop d return e

THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Mark Craven, David Rage, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
and Pedro Domingos.

	Instance-Based Learning
	Goals for the lecture
	Nearest-neighbor classification
	The decision regions
	k-nearest-neighbor classification
	How can we determine distance
	How can we determine distance
	Standardizing numeric features
	Variants
	k-nearest-neighbor regression
	Distance-weighted nearest neighbor
	Irrelevant features
	Locally weighted regression
	Locally weighted regression
	Speeding up k-NN
	Edited instance-based learning
	Strength and Limitations
	Strengths of instance-based learning
	Limitations of instance-based learning
	Inductive bias
	Consider the inductive bias of DT and k-NN learners
	Optional:�k-d Tree: Data Structure for Finding Nearest Neighbors
	k-d trees
	Finding nearest neighbors with a k-d tree
	Finding nearest neighbors in a k-d tree
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	THANK YOU

