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Goals for the lecture

you should understand the following concepts
* k-NN classification
* k-NN regression
» edited nearest neighbor
* locally weighted regression
* inductive bias (hypothesis space bias, preference bias)



Nearest-neighbor classification @

learning stage
e given a training set (x(9, y(), ..., (x™), y(™), do nothing
(it's sometimes called a lazy learner)

classification stage
e given: an instance x to classify
» find the training-set instance x® that is most similar to x(@
* return the class value %



The decision regions
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Voronoi diagram: each polyhedron indicates the region of feature space that

is in the nearest neighborhood of each training instance
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k-nearest-neighbor classification @

classification task
e given: an instance x to classify
« find the £ training-set instances (x(, y)), ..., (x®, y®) that
are most similar to x@
* return the class value

1 fa=>b

k
P« argmax Y o(v, y"” S(a,b) =
’ : XZ v,y (a,5) {0 otherwise

vevalues(Y) ;=1

(i.e. return the class that have the most instances)



How can we determine distance @

suppose all features are discrete

 Hamming distance: count the number of features for
which two instances differ

suppose all features are continuous
 Euclidean distance:

d(X(i),X(j)) _ \/2()#) _ xf,j))z where xﬁj) represents the f-th feature of @
f

 Manhattan distance:

d(X(i), X(j)) _ Z
f

Q) ()
g xf‘



How can we determine distance @

* if we have a mix of discrete/continuous features:

if f is continuous

Xr
d(x®,x0)) = E 3 .
kl 6( ;), ;J)) if f is discrete

(1,0 _ (j)|

» typically want to apply to continuous features some type of
normalization (values range 0 to 1) or standardization (values
distributed according to standard normal)

* many other possible distance functions we could use ...



Standardizing numeric features @

given the training set D, determine the mean and stddev for feature x;
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standardize each value of feature x; as follows

do the same for test instances, using the same u; and o; derived from
the training data
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k-nearest-neighbor regression @

learning stage
e given a training set (x(9, y(), ..., (x™), y(™), do nothing

prediction stage
e given: an instance x@ to make a prediction for
« find the £ training-set instances (x(, y)), ..., (x®, y®) that
are most similar to x@
* return the value
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Distance-weighted nearest neighbor

We can have instances contribute to a prediction
according to their distance from x@

classification:
A l
y «—argmax > w, o(v,y") W, = :
vevalues(Y) ;=1 l I d(x(Q): x(l))z
regression:
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Irrelevant features @

here’s a case in which there consider the effect of an
is one relevant feature x, and a 1- irrelevant feature x, on distances and
NN rule classifies each instance nearest neighbors
correctly
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Locally weighted regression

« one way around this limitation is to weight features
differently

* Jocally weighted regression is one nearest-neighbor
variant that does this

prediction task
 given: an instance x@ to make a prediction for

« find the % training-set instances (x, y()), ..., (x®, y®)
that are most similar to x@

 return the value

&) =w, +wx? +w,x? +... +w x'?



Locally weighted regression @

prediction/learning task
- find the weights w; for each x@ by minimizing

E(X(q)) — Zk:(f(x(i)) _ y(i))z

» this is done at prediction time, specifically for x@
« can do this using gradient descent (to be covered soon)



Speeding up A~-NN @

* ki-NN is a “lazy” learning algorithm — does virtually nothing at
training time

* but classification/prediction time can be costly when the
training set is large

» two general strategies for alleviating this weakness

« don’t retain every training instance (edited nearest
neighbor)

* use a smart data structure to look up nearest neighbors
(e.g. a k-d tree)



Edited instance-based learning @

* select a subset of the instances that still provide accurate classifications

 Incremental deletion
start with all training instances in memory
for each training instance (x, y®)
if other training instances provide correct classification for (x®, y®)
delete it from the memory

 iIncremental growth
start with an empty memory
for each training instance (x®, y®)
if other training instances in memory don’t correctly classify (x), y)
add it to the memory
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Strengths of instance-based learning @

* simple to implement

* “training” is very efficient

 adapts well to on-line learning

* robust to noisy training data (when £ > 1)
« often works well in practice



Limitations of instance-based learning @

* sensitive to range of feature values

* sensitive to irrelevant and correlated features, although ...

* there are variants (such as locally weighted regression)
that learn weights for different features

 |ater we’ll talk about feature selection methods

» classification/prediction can be inefficient, although edited
methods and i-d trees can help alleviate this weakness

» doesn’t provide much insight into problem domain because
there is no explicit model



Inductive bias

* jnductive bias is the set of assumptions a learner uses to
be able to predict y, for a previously unseen instance x;

 two components

* hypothesis space bias: determines the models that can
be represented

» preference bias: specifies a preference ordering within
the space of models

* in order to generalize (i.e. make predictions for previously
unseen instances) a learning algorithm must have an
iInductive bias



Consider the inductive bias of DT @
and 4-NN learners

learner hypothesis space bias preference bias

k-NN Voronoi decomposition determined instances in neighborhood
by nearest neighbors belong to same class
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- k-d Tree: Data Structure for
Finding Nearest Neighbors
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k-d trees

a k-d tree is similar to a decision tree except that each internal node

» stores one instance

« splits on the median value of the feature having the highest variance
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Finding nearest neighbors with a k-d tree@

e use branch-and-bound search

* priority queue stores
* nodes considered
* lower bound on their distance to query instance

* lower bound given by distance using a single feature

e average case: O(log,m)
worst case:  O(m) where m is the size of the training-set



Finding nearest neighbors in a k-d tree

NearestNeighbor(instance x@)
PQ=1{} // minimizing priority queue
best dist = « // smallest distance seen so far
PQ.push(root, 0)
while PQ is not empty
(node, bound) = PQ.pop();
if (bound = best_dist)
return best_node.instance I/l nearest neighbor found
dist = distance(x@, node. instance)
if (dist < best_dist)
best dist = dist
best node = node
if (¢9[node.feature] — node.threshold > 0)
PQ.push(node.left, x?[node.feature] — node.threshold)
PQ.push(node.right, 0)
else
PQ.push(node.left, 0)
PQ.push(node.right, node. threshold - x@ [node.feature])
return best_node. instance

o



k-d tree example (Manhattan distance)
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k-d tree example (Manhattan distance)
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k-d tree example (Manhattan distance) @
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k-d tree example (Manhattan distance) @

given query
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k-d tree example (Manhattan distance) @

given query
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k-d tree example (Manhattan distance)
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k-d tree example (Manhattan distance)
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k-d tree example (Manhattan distance)
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k-d tree example (Manhattan distance) @
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k-d tree example (Manhattan distance) @
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THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Mark Craven, David Rage, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
and Pedro Domingos.
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