
Instance-Based
Learning
CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts
• k-NN classification
• k-NN regression
• edited nearest neighbor
• locally weighted regression
• inductive bias (hypothesis space bias, preference bias)

Nearest-neighbor classification

learning stage
• given a training set (x(1), y(1)), …, (x(m), y(m)), do nothing

(it’s sometimes called a lazy learner)

classification stage
• given: an instance x(q) to classify
• find the training-set instance x(i) that is most similar to x(q)

• return the class value y(i)

The decision regions

x1

x2

Voronoi diagram: each polyhedron indicates the region of feature space that
is in the nearest neighborhood of each training instance

k-nearest-neighbor classification

classification task
• given: an instance x(q) to classify
• find the k training-set instances (x(1), y(1)), …, (x(k), y(k)) that

are most similar to x(q)

• return the class value

∑
=∈

←
k

i

i

Yv
yvy

1

)(

)(values
),(argmaxˆ δ

(i.e. return the class that have the most instances)



 =

=
otherwise 0

 if 1
),(

ba
baδ

How can we determine distance

suppose all features are discrete
• Hamming distance: count the number of features for

which two instances differ

suppose all features are continuous
• Euclidean distance:

• Manhattan distance:

()∑ −=
f

j
f

i
f

ji xxd 2)()()()(),(xx where represents the -th feature of

∑ −=
f

j
f

i
f

ji xxd)()()()(),(xx

)(i
fx)(ixf

How can we determine distance

• if we have a mix of discrete/continuous features:

• typically want to apply to continuous features some type of
normalization (values range 0 to 1) or standardization (values
distributed according to standard normal)

• many other possible distance functions we could use …

𝑑𝑑(𝐱𝐱(𝑖𝑖), 𝐱𝐱(𝑗𝑗)) = �
𝑓𝑓

�
𝑥𝑥𝑓𝑓

(𝑖𝑖) − 𝑥𝑥𝑓𝑓
(𝑗𝑗) if 𝑓𝑓 is continuous

1 − 𝛿𝛿 𝑥𝑥𝑓𝑓
(𝑖𝑖), 𝑥𝑥𝑓𝑓

(𝑗𝑗) if 𝑓𝑓 is discrete

Standardizing numeric features

𝜎𝜎𝑖𝑖 =
1
𝐷𝐷 �

𝑑𝑑=1

𝐷𝐷

𝑥𝑥𝑖𝑖
(𝑑𝑑) − 𝜇𝜇𝑖𝑖

2
𝜇𝜇𝑖𝑖 =

1
𝐷𝐷 �

𝑑𝑑=1

𝐷𝐷

𝑥𝑥𝑖𝑖
(𝑑𝑑)

• given the training set D, determine the mean and stddev for feature xi

• standardize each value of feature xi as follows

�𝑥𝑥𝑖𝑖
(𝑑𝑑) =

𝑥𝑥𝑖𝑖
(𝑑𝑑) − 𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

• do the same for test instances, using the same 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 derived from
the training data

Variants

k-nearest-neighbor regression

learning stage
• given a training set (x(1), y(1)), …, (x(m), y(m)), do nothing

prediction stage
• given: an instance x(q) to make a prediction for
• find the k training-set instances (x(1), y(1)), …, (x(k), y(k)) that

are most similar to x(q)

• return the value

∑
=

←
k

i

iy
k

y
1

)(1ˆ

Distance-weighted nearest neighbor

∑

∑

=

=← k

i
i

k

i

i
i

w

yw
y

1

1

)(
ˆ

We can have instances contribute to a prediction
according to their distance from x(q)

∑
=∈

←
k

i

i
i

Yv
yvwy

1

)(

)(values
),(argmaxˆ δ

classification:

regression:

Irrelevant features

x1

here’s a case in which there
is one relevant feature x1 and a 1-
NN rule classifies each instance
correctly

consider the effect of an
irrelevant feature x2 on distances and
nearest neighbors

x1

x2

Locally weighted regression

• one way around this limitation is to weight features
differently

• locally weighted regression is one nearest-neighbor
variant that does this

prediction task
• given: an instance x(q) to make a prediction for
• find the k training-set instances (x(1), y(1)), …, (x(k), y(k))

that are most similar to x(q)

• return the value

Locally weighted regression

prediction/learning task
• find the weights wi for each x(q) by minimizing

• this is done at prediction time, specifically for x(q)

• can do this using gradient descent (to be covered soon)

()∑
=

−=
k

i

iiq yfE
1

2)()()()()(xx

Speeding up k-NN

• k-NN is a “lazy” learning algorithm – does virtually nothing at
training time

• but classification/prediction time can be costly when the
training set is large

• two general strategies for alleviating this weakness
• don’t retain every training instance (edited nearest

neighbor)
• use a smart data structure to look up nearest neighbors

(e.g. a k-d tree)

Edited instance-based learning

• select a subset of the instances that still provide accurate classifications

• incremental deletion
start with all training instances in memory
for each training instance (x(i), y(i))

if other training instances provide correct classification for (x(i), y(i))
delete it from the memory

• incremental growth
start with an empty memory
for each training instance (x(i), y(i))

if other training instances in memory don’t correctly classify (x(i), y(i))
add it to the memory

Strength and Limitations

Strengths of instance-based learning

• simple to implement
• “training” is very efficient
• adapts well to on-line learning
• robust to noisy training data (when k > 1)
• often works well in practice

Limitations of instance-based learning
• sensitive to range of feature values

• sensitive to irrelevant and correlated features, although …
• there are variants (such as locally weighted regression)

that learn weights for different features
• later we’ll talk about feature selection methods

• classification/prediction can be inefficient, although edited
methods and k-d trees can help alleviate this weakness

• doesn’t provide much insight into problem domain because
there is no explicit model

Inductive bias

• in order to generalize (i.e. make predictions for previously
unseen instances) a learning algorithm must have an
inductive bias

• inductive bias is the set of assumptions a learner uses to
be able to predict yi for a previously unseen instance xi

• two components
• hypothesis space bias: determines the models that can

be represented
• preference bias: specifies a preference ordering within

the space of models

Consider the inductive bias of DT
and k-NN learners

learner hypothesis space bias preference bias

ID3 decision tree trees with single-feature, axis-
parallel splits

small trees identified by
greedy search

k-NN Voronoi decomposition determined
by nearest neighbors

instances in neighborhood
belong to same class

Optional:
k-d Tree: Data Structure for
Finding Nearest Neighbors

k-d trees
a k-d tree is similar to a decision tree except that each internal node
• stores one instance
• splits on the median value of the feature having the highest variance

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

x1

x2

Finding nearest neighbors with a k-d tree

• use branch-and-bound search
• priority queue stores

• nodes considered
• lower bound on their distance to query instance

• lower bound given by distance using a single feature

• average case: O(log2m)
• worst case: O(m) where m is the size of the training-set

Finding nearest neighbors in a k-d tree
NearestNeighbor(instance x(q))

PQ = { } // minimizing priority queue
best_dist = ∞ // smallest distance seen so far
PQ.push(root, 0)
while PQ is not empty

(node, bound) = PQ.pop();
if (bound ≥ best_dist)

return best_node.instance // nearest neighbor found
dist = distance(x(q), node. instance)
if (dist < best_dist)

best_dist = dist
best_node = node

if (q[node.feature] – node.threshold > 0)
PQ.push(node.left, x(q)[node.feature] – node.threshold)
PQ.push(node.right, 0)

else
PQ.push(node.left, 0)
PQ.push(node.right, node. threshold - x(q) [node.feature])

return best_node. instance

k-d tree example (Manhattan distance)
given query
x(q) = (2, 3)

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

given query
x(q) = (2, 3)

k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

pop f

given query
x(q) = (2, 3)

k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0)

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

pop f

given query
x(q) = (2, 3)

k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

pop f

given query
x(q) = (2, 3)

k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

pop f
pop c

given query
x(q) = (2, 3)

k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f (e, 0) (h, 4) (b, 7)

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

pop f
pop c

given query
x(q) = (2, 3)

k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f (e, 0) (h, 4) (b, 7)

1.0 1.0 e

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

pop f
pop c
pop e

given query
x(q) = (2, 3)

k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f (e, 0) (h, 4) (b, 7)

1.0 1.0 e (d, 1) (h, 4) (b, 7)

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

pop f
pop c
pop e

given query
x(q) = (2, 3)

k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f (e, 0) (h, 4) (b, 7)

1.0 1.0 e (d, 1) (h, 4) (b, 7)

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

pop f
pop c
pop e
pop d return e

given query
x(q) = (2, 3)

THANK YOU
Some of the slides in these lectures have been adapted/borrowed

from materials developed by Mark Craven, David Page, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,

and Pedro Domingos.

	Instance-Based Learning
	Goals for the lecture
	Nearest-neighbor classification
	The decision regions
	k-nearest-neighbor classification
	How can we determine distance
	How can we determine distance
	Standardizing numeric features
	Variants
	k-nearest-neighbor regression
	Distance-weighted nearest neighbor
	Irrelevant features
	Locally weighted regression
	Locally weighted regression
	Speeding up k-NN
	Edited instance-based learning
	Strength and Limitations
	Strengths of instance-based learning
	Limitations of instance-based learning
	Inductive bias
	Consider the inductive bias of DT and k-NN learners
	Optional:�k-d Tree: Data Structure for Finding Nearest Neighbors
	k-d trees
	Finding nearest neighbors with a k-d tree
	Finding nearest neighbors in a k-d tree
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	k-d tree example (Manhattan distance)
	THANK YOU

