CS 839: Theoretical Foundations of Deep Learning Spring 2022

Lecture 2 Challenges in Theoretical Analysis of Deep Learning

Instructor: Yingyu Liang Date: Jan 27", 2022 Scriber: Yingyu Liang

1 Elements of Statistical Learning Theory Framework

Let’s review some basics of some traditional framework for analyzing supervised machine
learning methods.

Let X denote the input space, and) the label space. Typically, X C R and) =
{—1,+41} for classification and)} = R for regression. The learning algorithm is given a
training data set S = {(x;,y;)}i, with z; € X and y; €), and a hypothesis/model class H
with functions h : X —). Its goal is to find a function h € H using the training data such
that h can have good prediction performance on future test data.

Some connection between the training and test data is thus needed; the typical assump-
tion is that they are all i.i.d. samples from some unknown ground-truth data distribution D
over X x).

Some performance measure is also needed. Let £(y,y) : V x YV +— R be some loss
function measuring the difference between the prediction 7 and the true label y. The pre-
diction performance of a function h € H over the data distribution is called the risk (or
expected /population risk, etc.):

R(h) =]E(x,y)ND[g(h(x)v y)] (1>
and that over the training data set is called the empirical risk (or traing loss, etc.):
~ 1
(z,y)eS

For binary classification, typical loss functions include

e 0-1 error {(y,y) =1y # vy,

e binary cross-entropy loss (or log loss) ¢(y,y) = —ylogy — (1 — y) log(1 — y) (assuming
y € {0,1} and 7 is the predicted probability for label 1),

e hinge-loss ¢(y,y) = max{0,1 — yy} (assuming y € {—1,+1}, and y € R is a scoring
function rather than the actual predicted label),

e logistic loss (7, y) = log(1 + exp(—yy)) (assuming y € {—1,+1}, ¥y € R, and 1/(1 +
exp(—y)) is the predicted probability for label 1. Equivalent to the cross-entropy loss
up to scaling).

For regression, the typical loss function is £(7,y) = (y — 7).

2 Risk Decomposition and Typical Analysis Paradigms

In key quantity in the analysis of machine learning is the risk: the goal is to get a function
with low risk (i.e., good generalization performance). The analysis is typically divided into
different aspects: approximation/representation, statistics/generalization, and optimization.
Then one can thoroughly investigate each aspect using the corresponding tools. To motivate
this, consider the following decomposition of the risk from [2].

Let’s introduce some intermediate notions:

e g*: the Bayesian optimal predictor (classifier or regression function) on D
e hopi: the optimal hypothesis for the risk (i.e., hopt € H and R(hopt) = infrey R(R))

° Eopt: the optimal hypothesis for the empirical risk (i.e., /ﬁopt € H and ﬁg(ﬁom) =
infhe% RS(h>>

e h: the hypothesis output by the learning algorithm

Then we can decompose the risk of 1 as follows:

R<ﬁ> R(g")
h,

R(hopt) — R(g") approximation
+ R (ﬁopt) R(hopt) estimation
+ R (/ﬁ) R(Aopt) optimization

R(g*) corresponds to the inherit noise in the data, and R(/f;) — R(g*) is called the excess risk.
The first line corresponds to approximation: g* is the best among all measurable functions
while hgpt is the best among H, so the difference reflects the approximation/representation
power of the hypothesis class H. The second line corresponds to estimation: ?Lopt is the
best using the sample while Ay, is the best using the distribution, so the difference reflects
the effect of the sampling. The third line corresponds to optimization: h is the hypothesis
obtained by the learning algorithm while Ay can be viewed as the hypothesis obtained by
an algorithm that returns the optimal solution for the optimization, so the difference reflects
the effect of the optimization algorithm used for learning.

One can then ask the corresponding questions about each aspect separately. For example,
study the approximation power of the hypothesis class: whether there exist h € H with
small risk? Or study only the statistical aspect: assuming there exist low risk (even 0 risk)
functions in the hypothesis class, and an optimization oracle that can return the optimal
solution for whatever optimization objective (e.g., Empirical Risk Minimization), how many
samples are needed to learn a low risk function? Or study only the optimization aspect: on
the optimization problem in training, does the algorithm get a near-optimal solution w.r.t.
the optimization objective?

Typical Analysis Paradigms. Note that while the decomposition motivates these as-
pects, the different parts are still not exactly those quantities analyzed. For example, the
last line is about the risk R, but when analyzing optimization alone, one would like to an-
alyze the objective on the training data (the empirical risk Rg). That is, one would like
to analyze }A%S(E) — Es(/ﬁopt). We thus further decompose the risk. For simplicity, assume
R(¢g*) = 0 and R(hopt) = R(g*). Then the risk decomposition above simplifies to

R(h) = R(hop)
+ R(h) — R(hp).
In fact, we can consider any function h, € H as a reference:
R(h) = R(h,)
R(h) = R(hy).
Introducing the intermediate quantities Rs(h) and Rg(h,), we have
R(h) = R(h)

~

= R(h) As(h) generalization gap
+ Rs(h) — Rs(h,) optimization
+ Rs(h,) — R(h,) concentration

Now consider the special case where h, hopt By boundmg the gap between the risk and
the empirical risk uniformly, and noting Rs(hopt) > RS(hopt) we arrive at:

R(h) — R(hopt) < Rs(h) — R (hop) + 2sup |Rs(h) — R(h)]

s(h) = R(hopt) + 2sup |[Rs(h) — R(R)|.
heH

:U>

<

The first part R (/f;) — Rs (ﬁopt) is exactly the quantity typically studied in optimization, and
the second part is exactly the quantity bounded by uniform convergence bounds (e.g., VC-
dim theory). This motivates the typical paradigm in traditional machine learning analysis:
separate the optimization and generalization; study the optimization on the training data
usually using convex optimization tools; study the generalization gap usually using uniform
convergence bounds from concentration inequalities.

Example. Consider binary classification by linear functions. X = R4 Y = {—1,+1}. For
the data distribution, the label is given by a ground-truth linear classifier y = sign({w*, x))
with parameter w*, and the input distribution can be any distribution on X'. The hypothesis
class is linear classifiers: H = {hy(z) = sign(g,(7)) : gu(z) = (w,z),w € R?}. The training
uses hinge loss on gu: (gw(z),y) = max{0,1 — yg.(z)} and returns h.

Consider the risk decomposition above, but apply it on 0-1 loss (instead of on hinge loss
used in training, for reasons explained below). Note that R(hpt) = Rs (ﬁopt) =0, so

R(h) < Rs(h) + 25up |Rs(h) — R(h)).

~

The first term Rg(h) is on 0-1 loss, which is upper-bounded by hinge loss used in train-
ing, so we only need to upper bound the average hinge loss on the training data (i.e., the
training objective). This is convex, so with convex optimization tools, we can claim that
the optimization can make Rg(h) to be (near) optimal which is 0. The second term can be
bounded using VC-dim theory. Since the VC-dim of linear classifiers in R? is d + 1, we have
suppey |Rs(h) — R(h)| = O(d/n) where n is the size of the training data set.! Therefore, we
conclude R(ﬁ) = O(d/n).

(We use 0-1 loss in the risk decomposition so VC-dim bound can be applied on the second
term. But 0-1 loss is not easy to optimize; rather, typically some convex surrogate upper
bound like hinge loss is used in training so that convex optimization can be applied.)

3 New Challenges in Analyzing Deep Learning

Let’s consider apply the above analysis paradigm to deep learning: separate the optimization
and generalization and analyze them one by one. There are two new key challenges.

For the optimization, the challenge is clear: the optimization is non-convex in general.
Even training a three-node network can be NP-complete in the worst case [1]. In contrast,
the practical networks can be of hundreds of layers with millions of nodes but can be trained
to small training losses with relatively simple algorithm (in particular, stochastic gradient
descent).

We can still try to analyze the generalization part alone, assuming the optimization
can be done to optimal. However, a surprising new challenge comes out. We can indeed
use for example VC-dim or Rademacher complexity to get a uniform convergence bound.
But it turns out that these bounds are vacuous: they are too loose to explain the practice
superior generalization performance, because the practical networks are of high complexity
and have very large VC-dim or Rademacher complexity. One may wonder maybe VC-dim
and Rademacher complexity are not the right complexity notion; maybe one can look for
another notion and then apply the uniform convergence bound.

However, [3] clearly demonstrated that practical networks can indeed be of high com-
plexity. In fact, they are overparameterized: they have the capacity to fit any labellings on
the training inputs. The following experiment was performed: replace the original labels in
the training data with completely random labels; train the practical neural network on these
random labeled data (with practical learning methods including regularization etc.). The
key observation is that the networks can still get 0 training loss (though may take longer
time to reach 0 loss than on original labeled data). The observation has several surprising
implications:

e Practical neural networks are overparameterized. They indeed have high complexity,
as high as can fit any labels on the training data.

e Even optimization on random labels remains easy. Previously it was conjectured by
some that the optimization is easy because the ground-truth labeling function has

!This is for the realizable case when R(hopt) = 0. For the non-realizable case when R(hopt) # 0, the
uniform convergence bound is O(y/d/n).

special structure. But this observation says even without structure the optimization
can still be easy.

e Optimization automatically adapts to the structure of the data. With random labels,
the network fits the training labels by memorization (i.e., no generalization). With
practical labels with structure, it learns the underlying structure rather than pure
memorization (i.e., good generalization).

It also means that the traditional analysis approach of decoupling optimization and gen-
eralization cannot work for deep learning. This is because for the training data (with the
original labels), there can exist different 0 training loss solutions, and some have low risk
but some have high risk.?2 Then decoupling optimization and generalization analysis cannot
explain why the practical learning returns a solution of the first kind (with low risk) but not
the second kind (with high risk). The analysis of optimization and generalization is thus
interwove together.

A conjecture is that the optimization has some implicit regularization effect that restricts
the learning dynamics to a subset of the whole hypothesis class. This algorithm-dependent
effective subset is not of high capacity so can lead to good generalization. Then many
fundamental questions arise: What is this subset? Why can the algorithm regularize the
learning to this subset? Why can the algorithm find a 0 training loss solution in the subset?
Why can this subset be so small to guarantee generalization? New perspectives for the
analysis of deep learning are thus needed.

References

[1] Avrim L Blum and Ronald L Rivest. Training a 3-node neural network is np-complete.
Neural Networks, 5(1):117-127, 1992.

[2] Leon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Proceedings
of the 20th International Conference on Neural Information Processing Systems, pages
161-168, 2007.

[3] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Un-
derstanding deep learning (still) requires rethinking generalization. Communications of
the ACM, 64(3):107-115, 2021.

2Though bad-risk 0-training-loss solutions on the original labeled data are not directly observed in the
experiments in [3], one can think of the following thought experiment: sample training data S from the data
distribution D, sample training data S’ from the data distirbution D’ which has the same input marginal
distribution as D but flips the labels, then train on S U.S’. One can get a network with 0 training loss on
SUS’, so 0 training loss on S. But this network should not have low risk on both D and D', because D and
D’ are symmetric for the learning algorithm, and they have opposite labels. So this network has 0 training
loss but high risk.

