CS 839: Theoretical Foundations of Deep Learning Spring 2022

Lecture 3 Approximation I

Instructor: Yingyu Liang Date: Feb 1%, 2022 Scriber: Zhenmei Shi

1 Overview

In the previous lecture, we decomposed the risk into three parts: approximation, estima-
tion/generalization and optimization. In this lecture we will focus on approximation power
of neural networks.

2 Problem Setup

2.1 Two-Layer Neural Network

Let X denote the input space, and) the label space. X < R4, and) = {—1, +1} for binary
classification. The hypothesis/model class H is 2-layer neural networks which can also be
thought of as a 1-hidden-layer neural network with functions h : X — Y,

h(x) = 2 a;o0((w;, x) + b;) = ac(Wx + b), (1)

=1

where w; € R%, a;,0; e RW = [w],...,w[]T,be R" ae R*™ and o is an activation
function. Below is a picture to better understand a neural network’s set of parameters
applied to the input.

Input Hidden Layer Output

Layer Activation o Layer
Weight W

Weight a

y’'=a - o(Wx+b)

Figure 1: Example of a 2-layer neural network given parameters

Example 1 (Activation Functions). Some common activation functions are:

e ReLU: o(2) = max(0, 2).

e Sigmoid: o(z) = 1

1+exp(—=z)"
RelU activation function Sigmoid activation function
6 [
4 4
2 2
o . —/‘———
=] =
£ o0 £ 04
]]
o c
-2 -2
-4 -4
-6 1 -6
T
-6 —4) 0 2 4 6 -6 —4 -2 0 2 4 6

Input Input

Figure 2: ReLLU and Sigmoid

2.2 L-Layer Neural Network

Now to define a Deep Neural Network (DNN) or multiple-layer neural network which has L
layers:

ho(x) = x
hj(x) = 0;(W;h;_1(x) + bj)
h(X = hL(X),

where x € R4, W, € R™>4 W, e R™*™i-1 for 4 =2, ..., L—1, Wy € RF*™i-1 and b, € R"™.
The function h is a mapping of h : R — R*. Normally, the same activation function is used
in all layers except the last one.

For multi-class classification with y € {1,..., k}, k is the number of classes in the problem,
the last layer uses the softmax function to generate a probabilistic vector, and the output
h(x) is regarded as the probabilities over the k classes.

For binary classification with y € {—1, +1}, typically & = 1, the last layer uses the sigmoid
function to generate a value in (0, 1), and the output h(x) is regarded as the probability of
the label +1.

For regression with y € R, typically k£ = 1, the last layer uses no activation function (or
equivalently, uses the identity function as the activation), and the output h(x) is regarded
as an estimation of y.

Example 2 (Loss Functions). Some typical examples of loss functions are:

e Cross-entropy loss for multi-class classification: [(y,y) = —log(y,) = — Zle y; log (i),
where y € {1,...,k}, ¥ is the one-hot encoding of y, 7 € R* is a probabilistic vector
(i.e., the softmax output of the network).

e Logistic loss for binary classification: [(y,y) = log(1 + exp(—yy)), where y € {—1, +1},
and y € R is the output of the network (usually the last layer uses no activation
function).

e Square loss for regression: [(y,y) = (y — y)?, where y € R, and § € R is the output of
the network (usually the last layer uses no activation function).

For L = 2,
h(X) = O'Q(WgO'l(Wlx + bl) + bg),

is equivalent to (1) when o is the identity function, Wy = a, and by = 0.

3 Approximation

Recall that the risk is,

R(h) = Euyll(h(x),y)].

Suppose we have a hypothesis class H and ground truth function class G and [(-,y) is 1-
Lipschitz, [I(7,y) — (v, y)| < [y — |- Let h € H,g € G, we define the distance d between
two functions and [; norm as,

d(h> g) = E(m,y) [l(h(X), y)] - IE(aﬁ,y) [Z(Q(X), y)]
< E@yllh(x) = gx)[] := |7 = g1

Their difference is also called the approximation error of function class H on G. We use [;
norm because it is convenient for theoretical analysis; other definitions are possible.
Our goal is to bound the following term:

inf |h —
sup fuf [= gl

to measure the approximation error of H on G.

4 Neural Networks Approximate Lipschitz Functions

4.1 1-dimension Case

Consider Lipschitz function family (non-parametric function family) g : [0,1) — R,
l9(x1) — g(w2)| < play — xaf, Vi, 25 € [0, 1).

We have the following theorem.

Theorem 3. Suppose g : [0,1) — R is p-Lipschitz. For any ¢ > 0, there exists a 2-layer-
neural-network h(z) with 2m neurons where m := [2], s.t. Vz € [0,1), |h(z) — g(z)] <.

Proof of Theorem 3. The proof idea is doing partition. The target function is almost con-
stant in each small interval. Construct a function by assigning left hand side value of the

target function in the interval. Let b; = (1;;”1)72. =1,...,m. Consider

h(r) = Z g(bj)I[x € [by, bj11)], (2)

we need to replace the indicator function by neurons. Consider step activation function
(threshold function),
0, 2<0
o(z) = {

1, 2=20

we have,
o(z—b;) —o(z—bjy1) =1[z € [bj, bj11)]-
Thus h(x) in (2) is a 2-layer-neural-network with 2m neurons. The error is bounded by,

[h(z) = g(@)| = [g(b;) — g(@)| < plbj —z[< p-— =€

I

]

We make use of threshold functions that use several 1-dimensional flat regions to approx-
imate arbitrary p-Lipschitz unitary functions.

4.2 High-dimension Case

In this section, we consider multivariate approximation, and similarly make use of higher
dimensional bumps or flat regions to approximate continuous multivariate functions. In
particular, we will use 3-layer-neural-network with ReLLU activation function to approximate
high-dimension Lipschitz function family.

Theorem 4. Suppose ¢ is a continuous function and ¢ > 0. Additionally, assume that
Vo > 0, Vx1,Xs € [0, 1]%, if |x; — Xa|ls < J, we have |g(x1) — g(x2)| < €. Then, there exists a
3-layer-neural-network h(x) with Q(%) ReLU neurons s.t. Vx € [0,1]%,|h(x) — g(x)| < 2e.

We can use similarly ideas in Theorem 3 to construct an intermediate function (piece-wise
constant function).

Lemma 5. Let g, d, ¢ be defined as in Theorem (4). For any partition P of [0, 1]¢ into hyper
rectangles, P = {R;}¥, with side length < §, there exists a piece-wise constant function
h(x) =3 al[x e R s.t. ¥x e [0,1]%|h(x) — g(x)| < .

Proof of Lemma 5. Let a; be the value of g on any point in the region R;. n

With this lemma, we are equipped to prove Theorem 1. Our strategy will be to apply
Lemma 5 to claim that a piece-wise constant function approximates a continuous function.
Then, we will prove that a 2-layer ReLU network can approximate an indicator function,
representing a bump in high dimensional space. Finally, we show by construction a 3-layer
neural network that uses the first 2 layers to approximate selector functions, and the final
layer to apply corresponding constants «; to the correct indicator approximation.

Proof of Theorem 4. Divide the domain [0, 1]¢ into sufficiently small hyper rectangles of the
form R; :=:= X?=1[aija bi;). If we can approximate I[x; € [a;;,b;;)] by 1 layer of the neural
network with ReLU activation function and approximate I[x € R;] by 2 layers of the neural
network with ReLLU activation function then we have three layers of the neural network as

f(x) = Z aii[x € Ry,

where I is approximate by neurons with ReLLU activation function. Then we have,

Exf(x) = 9(x)| < Ex[f(%) = h(x)| + Ex[h(x) = g(x)| < € + € = 2¢. (3)

aj-r | bjr
c1 C2 aj bj

Figure 3: Linear combination of ReLLU activations

Now, we will construct our two-layer networks to satisfy the above property. First, we are
going to approximate I[z € [a;j, b;;)] by neurons with ReLU activation function. Consider

o(z—c1)—o(z—c)

, (4)

C— (1

for ¢y > ¢y; see left figure in Figure 3. Two equation (4) can form an approximation function
of indicator function,

fijy (%) I%[U(l’j — aij) —o(z; — (a;; —)] — %[U(l’j —(bij +7)) —o(z; —biy)] (5)
Z=i[$j € [aij, bz‘j)], (6)

see right figure in Figure 3. Note that the v can be chosen to be sufficiently small so that
we have as small approximation error of I on I as desired. f;;,(x) can only approximate
one dimension. To approximate d dimension, we can compose these 1-layer single-coordinate
selector functions to form a 2-layer selector function that selects rectangles in all coordinates:

d
Ix e Ri] := fiy(x) = U(Z fijn(x) = (d=1)).

Then it satisfies:

1, X € Rz
fin(x) =210,1), o.w.
0, X ¢ ijl[az’j—%bz’j+’7]-

Finally, we pick a sufficiently small v. By equation (3), we conclude that 3-layer-neural-
networks with ReLLU activation function can approximate high-dimension Lipschitz function
family with small approximation error. O

Remark 6 (Curse of dimension). Note that this theorem requires a number of ReLLU units
exponential in the dimensionality. A neural network satisfying this requirement is likely to
be impractical in high-dimensional domains.

