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1 Overview

Continuing the theme of implicit regularization from the previous four lectures, we use the
tools developed in the last lecture to show that a non-smooth version of gradient flow (using
the Clarke subdifferential) yields non-decreasing “soft” margin for homogeneous predictors
on separable data. In particular this applies to neural networks since ReLU networks are
homogeneous. To perform this analysis, we first prove a useful lemma about Clarke subdif-
ferentials of homogeneous functions and generalize margin beyond linear classifiers.

2 Review

First we recall the definition of the Clarke subdifferential from last lecture.

Definition 1. For a locally-Lipschitz function f : X → R, the Clarke subdifferential of f
at w ∈ X is

∂f(w) = conv{s : ∃(wn)n such that wn → w,∇f(wn) → s}.

3 Subdifferential for Homogeneous Functions

Motivated by the observation last lecture that an L-hidden layer ReLU neural network is
L-homogeneous, we prove the following lemma.

Lemma 2. If f : Rd → R is locally-Lipschitz and L-homogeneous, then ∀w ∈ Rd and
∀s ∈ ∂f(w), we have

⟨s, w⟩ = Lf(w).

Proof. First, if w = 0 then this is trivial, since f(0) = 0Lf(0) = 0 by L-positive homogeneity.
Now we handle w ̸= 0. Let D = {w : f is differentiable at w}. (This is almost everywhere
by local-Lipschitzness and Radamacher’s theorem.) If w ∈ D \ {0}, then

0 = lim
δ↓0

f(w + δw)− f(w)− ⟨∇f(w), δw⟩
δ∥w∥

= lim
δ↓0

(
(1 + δ)L − 1

)
f(w)

δ∥w∥
− ⟨∇f(w), w⟩

∥w∥

=
Lf(w)

∥w∥
− ⟨∇f(w), w⟩

∥w∥
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where we used L-positive homogeneity and the fact that limδ↓0
((1+δ)L−1)

δ
is the (right) deriva-

tive of z 7→ zL at 1. Now we can rearrange to conclude that ⟨∇f(w), w⟩ = Lf(w). This
concludes this case, because since f is differentiable at w, ∂f(w) = {∇f(w)}.

Now we handle the case that w ̸∈ D \ {0} in two steps. Let s ∈ ∂f(w) be such that
there exists a sequence (wn) → w such that ∇f(wn) → s (not all s ∈ ∂f(w) are of this
form so this is only the first step). Then since all (wn)n are contained in D, for each n it
holds from previous cases that Lf(wn)−⟨∇f(wn), wn⟩ = 0. Then by continuity of f and the
inner product, as well as the fact that ∇f(wn) → s, we may take the limit to conclude that
Lf(w)− ⟨s, w⟩ = 0 as desired. Finally, all s ∈ ∂f(w) are by definition convex combinations
of vectors s1, . . . , sk which are handled by the previous step, and thus writing s =

∑k
i=1 αisi

where
∑k

i=1 αi = 1, using the result from the previous step we have that

⟨s, w⟩ =
k∑

i=1

αi⟨si, w⟩

=
k∑

i=1

αiLf(w)

= Lf(w).

4 Margin of Homogeneous Predictors

Now we move towards our main result on implicit regularization for neural networks. We
will show for L-homogeneous predictors that a “soft” version of the margin is non-decreasing
along the (non-smooth analogue of) gradient flow. Before we can do so, we first generalize
the margin beyond linear classifiers.

Definition 3. For an L-homogeneous predictor f(·;w) we define the margin on a single
point (xi, yi) as

mi(w) = yif(xi;w).

The (overall) margin of f(·;w) is

γ(w) = min
i

mi

(
w

∥w∥

)
= min

i

mi(w)

∥w∥L
.

Note that if f is a linear predictor then we recover the same definition as we have seen before.
The margin of the maximum-margin predictor is

γ = max
w:∥w∥=1

γ(w).

Instead of analyzing this “hard” version of margin, we will analyze the soft margin. For
a (non-averaged) loss L(w) =

∑n
i=1 ℓ(yif(xi;w)) where ℓ(·) is monotonic, we define the soft

margin as

γ̃(w) =
ℓ−1(L(w))

∥w∥L
.
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In the sequel we will focus on the exponential loss ℓ(z) = exp(−z). In this case the soft
margin becomes

γ̃(w) =
− ln

∑n
i=1 exp(yif(xi;w))

∥w∥L
=

− ln
∑n

i=1 exp(mi(w))

∥w∥L
.

Our separability assumption on the dataset will be that there exists w such that γ̃(w) > 0.

5 Main Result

We will analyze the flow given by the differential inclusion equation ẇ(t) ∈
−∂ ln

∑n
i=1 exp(−mi(w(t))), but first we prove a final useful lemma.

Lemma 4. For all w ∈ Rd, if v ∈ −∂ ln
∑n

i=1 exp(−mi(w)) and if the chain rule holds, then

−L ln
n∑

i=1

exp(−mi(w)) ≤ ⟨v, w⟩.

Proof. Fix such a v. Then by the chain rule, for each i = 1, . . . , n there exists vi ∈ ∂mi(w)
such that

v =
n∑

i=1

exp(−mi(w))vi∑n
j=1 exp(−mj(w))

.

Then we can calculate

⟨v, w⟩ =
n∑

i=1

exp(−mi(w))∑n
j=1 exp(−mj(w))

⟨vi, w⟩

=
n∑

i=1

exp(−mi(w))∑n
j=1 exp(−mj(w))

Lmi(w)

=
n∑

i=1

exp(−mi(w))∑n
j=1 exp(−mj(w))

(−L ln(exp(−mi(w))))

≥
n∑

i=1

exp(−mi(w))∑n
j=1 exp(−mj(w))

(
−L ln

(
n∑

k=1

exp(−mk(w))

))

= −L ln

(
n∑

k=1

exp(−mk(w))

)
n∑

i=1

exp(−mi(w))∑n
j=1 exp(−mj(w))

= −L ln

(
n∑

k=1

exp(−mk(w))

)

where the second step made use of lemma 2 and the inequality used the fact that − ln is
monotonically decreasing.
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Theorem 5. For the flow with w(0) = 0, ẇ(t) ∈ −∂ ln
∑n

i=1 exp(−mi(w(t))), assuming
that the chain rule holds for almost all t ≥ 0 and assuming that there exists t0 such that
γ̃(w(t0)) > 0, then γ̃(w(t)) is non-decreasing for t ≥ t0.

Proof. For convenience let γ̃(t) = γ̃(w(t)). Appealing to the fundamental theorem of calcu-
lus, we want to show that d

dt
γ̃(t) ≥ 0 ∀t ≥ t0. Fix an arbitrary t ≥ t0 and define

u(t) = − ln
n∑

i=1

exp(−mi(w(t))), v(t) = ∥w(t)∥L,

so that

γ̃(t) =
u(t)

v(t)
.

Then

d

dt
γ̃(t) =

u̇(t)v(t)− u(t)v̇(t)

v(t)2
.

Note that when γ̃(t) > 0 we must have w ̸= 0 so v(t) > 0. Now we analyze both u̇(t) and
v̇(t). Since ẇ(t) ∈ ∂u(t) and we assume the chain rule holds, we have for almost all t that

u̇(t) = ∥ẇ(t)∥2

≥ ∥ẇ(t)∥
〈

w(t)

∥w(t)∥
, ẇ(t)

〉
≥ Lu(t)∥ẇ(t)∥

∥w(t)∥

where the first inequality was by Cauchy-Schwarz and the second was by lemma 4. Next,
again using Cauchy-Schwarz

v̇(t) = L∥w(t)∥L−1

〈
w(t)

∥w(t)∥
, ẇ(t)

〉
≤ L∥w(t)∥L−1∥ẇ(t)∥.

Using these upper and lower bounds we have that

u̇(t)v(t)− u(t)v̇(t) ≥ Lu(t)∥ẇ(t)∥
∥w(t)∥

v(t)− u(t)L∥w(t)∥L−1∥ẇ(t)∥

= u(t)L∥w(t)∥L−1∥ẇ(t)∥ − u(t)L∥w(t)∥L−1∥ẇ(t)∥
= 0

(where v(t) > 0 as explained above and also u(t) > 0 because γ̃(t) > 0).
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