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1 Overview

Continuing the theme of implicit regularization from the previous four lectures, we use the
tools developed in the last lecture to show that a non-smooth version of gradient flow (using
the Clarke subdifferential) yields non-decreasing “soft” margin for homogeneous predictors
on separable data. In particular this applies to neural networks since ReLLU networks are
homogeneous. To perform this analysis, we first prove a useful lemma about Clarke subdif-
ferentials of homogeneous functions and generalize margin beyond linear classifiers.

2 Review

First we recall the definition of the Clarke subdifferential from last lecture.

Definition 1. For a locally-Lipschitz function f : X — R, the Clarke subdifferential of f
at we X is

df(w) = conv{s : I(w,), such that w, — w,V f(w,) — s}.

3 Subdifferential for Homogeneous Functions

Motivated by the observation last lecture that an L-hidden layer ReLLU neural network is
L-homogeneous, we prove the following lemma.

Lemma 2. If f : RY — R is locally-Lipschitz and L-homogeneous, then Yw € RY and
Vs € 0f(w), we have
(s,w) = Lf(w).

Proof. First, if w = 0 then this is trivial, since f(0) = 0¥ f(0) = 0 by L-positive homogeneity.
Now we handle w # 0. Let D = {w : f is differentiable at w}. (This is almost everywhere
by local-Lipschitzness and Radamacher’s theorem.) If w € D \ {0}, then

f(w +dw) — f(w) — (Vf(w),ow)
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where we used L-positive homogeneity and the fact that limso w is the (right) deriva-
tive of z — 2L at 1. Now we can rearrange to conclude that (Vf(w),w) = Lf(w). This
concludes this case, because since f is differentiable at w, df(w) = {V f(w)}.

Now we handle the case that w ¢ D \ {0} in two steps. Let s € df(w) be such that
there exists a sequence (w,) — w such that Vf(w,) — s (not all s € df(w) are of this
form so this is only the first step). Then since all (w,,), are contained in D, for each n it
holds from previous cases that Lf(w,)— (V f(w,),w,) = 0. Then by continuity of f and the
inner product, as well as the fact that V f(w,) — s, we may take the limit to conclude that
Lf(w) — (s,w) =0 as desired. Finally, all s € 0f(w) are by definition convex combinations
of vectors si, ..., s, which are handled by the previous step, and thus writing s = Zle Q;S;

where Zle a; = 1, using the result from the previous step we have that
k
(s,w) = Z%‘(Si, w)
i=1

= ZaiLf(w)
= Lf(w).

4 Margin of Homogeneous Predictors

Now we move towards our main result on implicit regularization for neural networks. We
will show for L-homogeneous predictors that a “soft” version of the margin is non-decreasing
along the (non-smooth analogue of) gradient flow. Before we can do so, we first generalize
the margin beyond linear classifiers.

Definition 3. For an L-homogeneous predictor f(-;w) we define the margin on a single
point (z;,y;) as

m;(w) = yi f (zi; w).
The (overall) margin of f(-;w) is

m;(w)
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Note that if f is a linear predictor then we recover the same definition as we have seen before.
The margin of the maximum-margin predictor is
7= max ¥ (w).
w:||wl||=1
Instead of analyzing this “hard” version of margin, we will analyze the soft margin. For
a (non-averaged) loss £(w) = 1", {(y; f(z;;w)) where £(-) is monotonic, we define the soft
margin as
~ (H(L(w))
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In the sequel we will focus on the exponential loss ¢(z) = exp(—z). In this case the soft
margin becomes

—In 3o exp(yf (wiw)) _ —In 3oL, exp(mi(w))

w) = Twl? - Jol?

Our separability assumption on the dataset will be that there exists w such that 3(w) > 0.

5 Main Result

We will analyze the flow given by the differential inclusion equation w(t) €
—0Iny " exp(—m;(w(t))), but first we prove a final useful lemma.

Lemma 4. For all w € R if v € —0In > | exp(—m;(w)) and if the chain rule holds, then
—LIn ) exp(—m;(w)) < (v,w).
i=1

Proof. Fix such a v. Then by the chain rule, for each i = 1,...,n there exists v; € Im;(w)
such that

exp(—m;(w))v;
ZZ _, exp(—mj;(w))

Then we can calculate

:Zz@exp( mi(w ” (— L In(exp(—my(w))))
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where the second step made use of lemma 2 and the inequality used the fact that —In is
monotonically decreasing. O



Theorem 5. For the flow with w(0) = 0, w(t) € —9In)""  exp(—m;(w(t))), assuming
that the chain rule holds for almost all ¢ > 0 and assuming that there exists ¢y such that
Y(w(to)) > 0, then Y(w(t)) is non-decreasing for t > t.

Proof. For convenience let ¥(t) = 7(w(t)). Appealing to the fundamental theorem of calcu-
lus, we want to show that %’i(t) > 0 Vt > tg. Fix an arbitrary ¢ > tq and define

u(t) = — lnz exp(—m;(w(t)),  v(t) = w®)]|",

so that 0
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Note that when ¥(¢) > 0 we must have w # 0 so v(t) > 0. Now we analyze both #(t) and
0(t). Since w(t) € Ju(t) and we assume the chain rule holds, we have for almost all ¢ that

a(t) = [lu()]”
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where the first inequality was by Cauchy-Schwarz and the second was by lemma 4. Next,
again using Cauchy-Schwarz

0(t) = L”w(’f)HLi1 <HZE2H ’ w(t)>
< Lijw@®)I* ().

Using these upper and lower bounds we have that
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(where v(t) > 0 as explained above and also u(t) > 0 because ¥(t) > 0). O



