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1 Continuous Setting

Consider the traditional classification task: given input-out data (xi, yi)
n
i=1, x ∈ Rd, y ∈

{1,−1}. The goal is to find a function f : Rd → R, such that:

min
f

Q(f) = L(f) +R(f), L(f) = Ex,y[l(f(x)), y)],

where l(·) is defined to be the loss function and R is a regularization function. Similar
to Kernel methods, consider the two-level network given below to represent f :

f(ω, ρ, x) =

∫
Rd

σ(θ, x)ω(θ)ρ(θ)dθ (1)

where σ(θ, x) : Rd × Rd → R is a known real-valued function, ω(θ) : Rd → R is a real
value function of θ, and ρ(θ) is a probability density over θ. For regularizer, we use

R(ω, ρ) = λ1R1(ω, ρ) + λ2R2(ρ)

, where

R1(ω, ρ) =

∫
r1(ω(θ))ρ(θ)dθ, r1(ω) = |ω|2

R2(ρ) =

∫
r2(θ)ρ(θ)dθ, r2(θ) = ||θ||2

Next we show a discrete NN approximates the continuous one when hidden nodes go to
infinity and then drive the evolution rule of ρ(θ) and ω(θ) from the (noisy) GD algorithm
when the step size becomes small.

2 Discrete Setting

Consider a finite NN with the following form to approximate f(ω, ρ, x):

f̂(µ, θ, x) =
1

m

m∑
j=1

µjσ(θjt , x) (2)

with the regularization term:
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R̂1(µ, θ) =
1

m

m∑
j=1

r1(µ
j), R̂2(θ) =

1

m

m∑
j=1

r2(θ
j), (3)

Consider trainwith objective denoted as,

Q̂(u, θ) = Ex,yl(f̂(u, θ, x), y) + λ1R̂1(u, θ) + λ2R̂2(θ) (4)

We can solve it through the standard (noisy) GD, the algorithm is given by:

Step 0. Initialize (µ0, θ0 ∼ P0(µ, θ))
Step 1. Update θj by

θjt+1 = θjt −∆t∇θj

[
Q̂ (ut, θt)

]
−
√

λ3ξ
j
t+1,

where ∆t is the step size and ξjt+1 ∼ N
(
0,
√
2∆tId

)
.

Step 2. Update µj by

uj
t+1 = uj

t −∆t∇uj

[
Q̂ (ut, θt)

]
−

√
λ3ζ

j
t+1,

where ζjt+1 ∼ N(0,
√
2∆t).

2.1 Plain GD

We first consider the unnoisy setting where λ3 = 0. We have the following Lemma.

Lemma 1. Suppose at time t ≥ 0, we have θjt ∼ ρt, and let ut
j = ωt

(
θjt
)
. Assume l′ is

continuous and σ is twice differentiable. For all x, we have:

lim
m→∞

f̂ (ut, θt, x) = f (ωt, ρt, x) (5)

Furthermore, when ∆t → 0,m → ∞, we can derive,

dρt(θ)

dt
= −∇θ · [ρt(θ)g2 (t, θ, ωt(θ))]

dωt(θ)

dt
= g1 (t, θ, ωt(θ))−∇θ [ωt(θ)] · g2 (t, θ, ωt(θ)) ,

where ∇θ means the divergence, g1 and g2 satisfy:

g1(t, θ, u) = −Ex,y [l
′ (f (ωt, ρt, x) , y)σ(θ, x)]− λ1∇u [r1(u)]

g2(t, θ, u) = −Ex,y [l
′ (f (ωt, ρt, x) , y)u∇θσ(θ, x)]− λ2∇θ [r2(θ)]

To prove the lemma, we utilize the tool with Fokker-Planck Equation to compute the
evolution.
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Background with Fokker-Planck Equation Suppose the movement of a particle in m-
dimensional space can be characterized by the stochastic differential equation given below:

dxt = g (xt, t) dt +
√
2β−1ΣdBt

Let xt ∼ p(x, t), the evolution of p(x, t) is given by:

∂p(x, t)

∂t
=

ΣΣ⊤

β
∇2p(x, t)−∇ · [p(x, t)g (xt, t)]

.

Proof of Lemma 1. Let the pt(θ, µ) as the joint distribution for (θ, µ):

(θjt , u
j
t) ∼ pt(θ, u) = ρtδ (u = ωt(θ))

We can rewrite f (ωt, ρt, x) as:

f (ωt, ρt, x) =

∫
Rd+1

σ(θ, x)pt(θ, u)dθdu

By the Law of the Large number, when m → ∞,

f̂ (ut, θt, x) → f (ωt, ρt, x)

Now we denote

ĝ2(t, θ, u) = −Ex,y

[
l′
(
f̂ (ut, θt, x) , y

)
u∇θσ(θ, x)

]
− λ2∇θ [r2(θ)]

From the update rule of GD, we have θjt+1 = θjt + ∆tĝ2
(
t, θjt , u

j
t

)
. Let ∆t → 0, using

uj
t = ωt

(
θjt
)
, we have

dθjt
dt

= ĝ2
(
t, θjt , ωt

(
θjt
))

By applying Fokker-Planck equation,

dρt(θ)

dt
= −∇θ · [ρt(θ)ĝ2 (t, θ, ωt(θ))]

As m → ∞, and because l′ is continuous, σ(θ, x) and ρt are also second-order smooth,
we obtain:

∇θ · [ρt(θ)ĝ2 (t, θ, ωt(θ))]−∇θ · [ρt(θ)g2 (t, θ, ωt(θ))]
a.s.→ 0

To prove the evolution form for ωt(θ), we let:

ĝ1(t, θ, u) = −Ex,y

[
l′
(
f̂ (ut, θt, x) , y

)
σ(θ, x)

]
− λ1∇ur1(u)

On one side,
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ωt+∆t (θt+∆t)

=ωt+∆t (θt + ĝ2 (t, θt, ωt(θ))∆t+ o(∆t))

=ωt (θt + ĝ2 (t, θt, ωt(θ))∆t+ o(∆t)) +
dωt (θt + ĝ2 (t, θt, ωt(θ))∆t+ o(∆t))

dt
∆t

=ωt (θt) + [∇θωt(θ)] · ĝ2 (t, θt, ωt(θ))∆t+ o(∆t) +
dωt (θt + ĝ2 (t, θ, ωt(θ))∆t+ o(∆t))

dt
∆t.

By the update rule ωt+∆t (θt+∆t) = ωt (θt) + ĝ1 (t, θt, ωt(θ))∆t, we have:

dωt (θt + ĝ2 (t, θt, ωt(θ))∆t+ o(∆t))

dt
= − [∇θ (ωt(θ))] · ĝ2 (t, θt, ωt(θ)) + ĝ1 (t, θt, ωt(θ)) + o(1)

The proof is finished by Let ∆t → 0, and let m → ∞.
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