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1 Continuous Setting

Consider the traditional classification task: given input-out data (z;,y,)",, * € RYy €
{1,—1}. The goal is to find a function f : RY — R, such that:

minQ(f) = L(f) + B(f), L(f) = Eey[l(f(2)), )],

where [() is defined to be the loss function and R is a regularization function. Similar
to Kernel methods, consider the two-level network given below to represent f:

Floupa) = [ o(6.0)e(0)0(6)d9 1)

where o(0,7) : R x R? — R is a known real-valued function, w(f) : R? — R is a real
value function of 6, and p(0) is a probability density over §. For regularizer, we use

R(w, p) = MRi(w, p) + A2 Ra(p)

, where

Rifw.p) = [ ((®)p(0)a, () = Jof
Ralp) = [ ra6)0(6)d0,72(6) = |6

Next we show a discrete NN approximates the continuous one when hidden nodes go to
infinity and then drive the evolution rule of p() and w(#) from the (noisy) GD algorithm
when the step size becomes small.

2 Discrete Setting

Consider a finite NN with the following form to approximate f(w, p, z):

Flp.0.2) = Zua&?, (2)

with the regularization term:



0)= =3 n(), Ral0) = = 3, ®)

Consider trainwith objective denoted as,

Q(u,0) = Epyl(f(u,0,0),y) + N R (u,6) + Ao R (6) (4)
We can solve it through the standard (noisy) GD, the algorithm is given by:

Step 0. Initialize (uo, 0o ~ Po(p,0))
Step 1. Update 0; by

Qgﬂ = 0{ — AtVy; [ (g, 0, ] \/_£t+17

where At is the step size and §’g+1 ~ N (0, V 2At]d>.
Step 2. Update p; by

Ugﬂ = Ut AtV [ (ut, O } A% §t+1a

where ¢, ~ N(0,v2At).

2.1 Plain GD

We first consider the unnoisy setting where A3 = 0. We have the following Lemma.

Lemma 1.  Suppose at time ¢t > 0, we have ¢/ ~ p,, and let uh = wy (9;57) Assume [ is

continuous and o is twice differentiable. For all x, we have:

lim J/C\(Ut,gnx) = [ (wt, pr, ) (5)

m—r0o0

Furthermore, when At — 0, m — 0o, we can derive,

dp.(0) ==V - [pe(0)g2 (t,0,w(6))]

91 (t,0,w(0)) — Ve [wi(0)] - g2 (¢, 0, we(6))
where Vy means the divergence, g; and gy satisfy:
g1(t,0,u) = =Eoy [I'(f (@i, pr, ) s y) 0(6, )] = MV [r1(u)]
92(t,0,u) = —Eqy [I' (f (Wi, pr, ), y) uVeo (0, )] — A2V [r2(6)]

To prove the lemma, we utilize the tool with Fokker-Planck Equation to compute the

evolution.



Background with Fokker-Planck Equation Suppose the movement of a particle in m-
dimensional space can be characterized by the stochastic differential equation given below:

dry = g (x,t) dy + /2071 5dp,
Let x; ~ p(z,t), the evolution of p(x,t) is given by:

op(x,t)  BNT

= Vp(z,t) — V- [p(z, t)g (x4, 1)]

Proof of Lemma 1. Let the p,(6, 1) as the joint distribution for (6, u):

(07, ul) ~ pe(0,0) = pid (u = wi(0))

We can rewrite f (wy, pt, z) as:
f(wtaptyx) = / U(e,x)pt<9,11,)d9du
Rd+1

By the Law of the Large number, when m — oo,

f(ut,et,x) — f (i, pr, @)

Now we denote

Ga(t,0,u) = —E,, [l’ (J?(ut, O, x) ,y) uVea(Q,x)] — X Vg [r2(0)]

From the update rule of GD, we have Gtﬂ 0] + Atg» (t,@{,u{). Let At — 0, using
ul = w, (Qi), we have
el : .
% = g2 (t,@g,wt (9{))
By applying Fokker-Planck equation,

dp;lie) =~V [p(0)32 (¢, 0, w,(0))]

As m — oo, and because [’ is continuous, ¢(f,x) and p, are also second-order smooth,
we obtain:

Vo - [p(0)G2 (t, 0,w(0))] — Vo - [p1(0) g2 (t,0,w:(6))] =3 0

To prove the evolution form for w; (@), we let:

q(t,0,u) = [ ut,Gt, Y >a(0,x)] — MV (u)

On one side,



Wi+ At (9t+At)
=Wi+At (9t + @\2 (t 0y, wt(e)) At + O(At))

dwt (0,5 + /9\2 (t, Qt, (JJt<0)) At + O(At)) A
dt t

dwy (0; + G2 (t,0,w(0)) At + o(At))
dt

=wy (0 + G2 (t, 01, wi(0)) At + o(At)) +

—w; (0) + [Vowi(0)] - Go (£, 0,, wi(0)) At + o(At) + At.

By the update rule wiiat (Orrar) = wi (6) + 91 (¢, 0, wi(0)) At, we have:

dwt (Qt + /9\2 (t, 0157 wt(Q)) At + O(At))
dt

= — [Vo (wi(0))] - G2 (¢, 01, 1 (0)) + g1 (¢, 01, wi (0)) + o(1)

The proof is finished by Let At — 0, and let m — oc.



