Homework 1

>>NAME HERE<<
\gg WISC ID HERE \ll

Instructions: You only need to hand in a pdf answer file. There is no need to submit the latex source. Use this latex file as a template to develop your homework. Submit your homework on time as a single pdf file to Canvas. Please check Piazza for updates about the homework, if any.

1 Kernel [25 pts]

Consider the following simple kernel function:

$$
K\left(x, x^{\prime}\right)= \begin{cases}1 & \text { if } x=x^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Suppose the input space \mathcal{X} is finite.
(a) Prove that it is a legal kernel. Specifically, describe an implicit mapping $\Phi: \mathcal{X} \rightarrow \mathbb{R}^{m}$ (for some value m) such that $K\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle$.
(b) In the Φ-space, any labeling of the points in \mathcal{X} will be linearly separable. So, this should be perfect for learning any target function you want to: just run a kernelized version of Perceptron or SVM.
i. Why is any assignment of labels to points linearly separable?
ii. Nonetheless, what is the problem with learning with such a kernel?

2 Probability [25 pts]

Suppose $v, \phi \in \mathbb{R}^{d}$. For $i \notin S$, ϕ_{i} 's are i.i.d. random variables with $\mathbb{E}\left[\phi_{i}\right]=0, \mathbb{E}\left[\phi_{i}^{2}\right]=\sigma^{2}$, and $\mathbb{E}\left[\left|\phi_{i}\right|^{3}\right]=\nu^{3}$. Prove that for any $S \subset[d]$ and $b \in \mathbb{R}$,

$$
\left|\operatorname{Pr}\left\{\sum_{i \in[d]} \phi_{i} v_{i} \geq b\right\}-\operatorname{Pr}\left\{\sum_{i \notin S} \phi_{i} v_{i} \geq b\right\}\right| \leq O\left(\frac{\left|\sum_{i \in S} \phi_{i} v_{i}\right|}{\sqrt{\sigma^{2} \sum_{i \notin S} v_{i}^{2}}}+\frac{\nu^{3} \sum_{i \notin S}\left|v_{i}\right|^{3}}{\left(\sigma^{2} \sum_{i \notin S} v_{i}^{2}\right)^{3 / 2}}\right)
$$

Hint: use the Berry-Esseen Theorem.

3 Application of Probability [25 pts]

Consider a two-layer neural network:

$$
f(x)=\sum_{i=1}^{m} a_{i} \sigma\left(\left\langle w_{i}, x\right\rangle\right)
$$

where $\sigma(z)=\max (0, z)$ is the rectified linear unit (ReLU) activation function. Initialize each entry $w_{i j}$ with Gaussians $\mathcal{N}\left(0, \sigma^{2}\right)$ independently.
Prove that for any x with unit norm $\|x\|_{2}=1$, any $\delta>0$, with probability at least $1-\delta$ over the random initialization of $\left\{w_{i}\right\}$, the following is true: for any $\tau>0$ and any $\left\{\Delta_{i}\right\}$ with $\left\|\Delta_{i}\right\|_{2} \leq \tau$, there are at least $(1-\tau / \sigma) m-\sqrt{m \log (1 / \delta)}$ neurons whose activation patterns are the same for using weights $\left\{w_{i}\right\}$ and $\left\{w_{i}+\Delta_{i}\right\}$, i.e.,

$$
\mathbb{I}\left[\left\langle w_{i}, x\right\rangle \geq 0\right]=\mathbb{I}\left[\left\langle w_{i}+\Delta_{i}, x\right\rangle \geq 0\right]
$$

4 Optimization [25 pts]

We say a function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ satisfies the (g, h)-proxy convexity if there exist functions $g, h: \mathbb{R}^{p} \rightarrow \mathbb{R}$ such that for all $w, v \in \mathbb{R}^{p}$:

$$
\langle\nabla f(w), w-v\rangle \geq g(w)-h(v) .
$$

(Note that a convex function satisfies the above with $g=h=f$.)
Given a distribution \mathcal{D} over z, suppose that $F(w):=\mathbb{E}_{z \sim \mathcal{D}} f(w ; z)$ and $f(; z)$ satisfies the $(g(\cdot ; z), h(\cdot ; z))$-proxy convexity for each z. Denote $H(w):=\mathbb{E}_{z \sim \mathcal{D}} h(w ; z)$ and $G(w):=\mathbb{E}_{z \sim \mathcal{D}} g(w ; z)$.
Consider online stochastic gradient descent on $F(w)$:

1. Pick an arbitrary initialization w_{0}.
2. For $t=0,1, \ldots, T-1$, sample $z_{t} \sim \mathcal{D}$ and let $w_{t+1}=w_{t}-\eta \nabla f\left(w_{t} ; z_{t}\right)$ where $\eta>0$ is the step size.

Assume there exists $L_{1}>0$ such that for all $w, \mathbb{E}_{z \sim \mathcal{D}}\left[\|\nabla f(w ; z)\|^{2}\right] \leq L_{1}^{2}$. Prove that for any $v \in \mathbb{R}^{p}, \epsilon>0$, with properly set η and T, we have

$$
\min _{t<T} \mathbb{E}_{\left(z_{0}, z_{1}, \ldots, z_{t-1}\right) \sim \mathcal{D}^{t}} G\left(w_{t}\right) \leq H(v)+\epsilon
$$

