Lecture 10 Implicit Regularization for Neural Networks
Instructor: Yingyu Liang Date: Scriber: Matthew Zurek

1 Overview

Continuing the theme of implicit regularization from the previous four lectures, we use the tools developed in the last lecture to show that a non-smooth version of gradient flow (using the Clarke subdifferential) yields non-decreasing "soft" margin for homogeneous predictors on separable data. In particular this applies to neural networks since ReLU networks are homogeneous. To perform this analysis, we first prove a useful lemma about Clarke subdifferentials of homogeneous functions and generalize margin beyond linear classifiers.

2 Review

First we recall the definition of the Clarke subdifferential from last lecture.
Definition 1. For a locally-Lipschitz function $f: \mathcal{X} \rightarrow \mathbb{R}$, the Clarke subdifferential of f at $w \in \mathcal{X}$ is

$$
\partial f(w)=\operatorname{conv}\left\{s: \exists\left(w_{n}\right)_{n} \text { such that } w_{n} \rightarrow w, \nabla f\left(w_{n}\right) \rightarrow s\right\}
$$

3 Subdifferential for Homogeneous Functions

Motivated by the observation last lecture that an L-hidden layer ReLU neural network is L-homogeneous, we prove the following lemma.

Lemma 2. If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is locally-Lipschitz and L-homogeneous, then $\forall w \in \mathbb{R}^{d}$ and $\forall s \in \partial f(w)$, we have

$$
\langle s, w\rangle=L f(w)
$$

Proof. First, if $w=0$ then this is trivial, since $f(0)=0^{L} f(0)=0$ by L-positive homogeneity. Now we handle $w \neq 0$. Let $D=\{w: f$ is differentiable at $w\}$. (This is almost everywhere by local-Lipschitzness and Radamacher's theorem.) If $w \in D \backslash\{0\}$, then

$$
\begin{aligned}
0 & =\lim _{\delta \downarrow 0} \frac{f(w+\delta w)-f(w)-\langle\nabla f(w), \delta w\rangle}{\delta\|w\|} \\
& =\lim _{\delta \downarrow 0} \frac{\left((1+\delta)^{L}-1\right) f(w)}{\delta\|w\|}-\frac{\langle\nabla f(w), w\rangle}{\|w\|} \\
& =\frac{L f(w)}{\|w\|}-\frac{\langle\nabla f(w), w\rangle}{\|w\|}
\end{aligned}
$$

where we used L-positive homogeneity and the fact that $\lim _{\delta \downarrow 0} \frac{\left((1+\delta)^{L}-1\right)}{\delta}$ is the (right) derivative of $z \mapsto z^{L}$ at 1 . Now we can rearrange to conclude that $\langle\nabla f(w), w\rangle=L f(w)$. This concludes this case, because since f is differentiable at $w, \partial f(w)=\{\nabla f(w)\}$.

Now we handle the case that $w \notin D \backslash\{0\}$ in two steps. Let $s \in \partial f(w)$ be such that there exists a sequence $\left(w_{n}\right) \rightarrow w$ such that $\nabla f\left(w_{n}\right) \rightarrow s$ (not all $s \in \partial f(w)$ are of this form so this is only the first step). Then since all $\left(w_{n}\right)_{n}$ are contained in D, for each n it holds from previous cases that $L f\left(w_{n}\right)-\left\langle\nabla f\left(w_{n}\right), w_{n}\right\rangle=0$. Then by continuity of f and the inner product, as well as the fact that $\nabla f\left(w_{n}\right) \rightarrow s$, we may take the limit to conclude that $L f(w)-\langle s, w\rangle=0$ as desired. Finally, all $s \in \partial f(w)$ are by definition convex combinations of vectors s_{1}, \ldots, s_{k} which are handled by the previous step, and thus writing $s=\sum_{i=1}^{k} \alpha_{i} s_{i}$ where $\sum_{i=1}^{k} \alpha_{i}=1$, using the result from the previous step we have that

$$
\begin{aligned}
\langle s, w\rangle & =\sum_{i=1}^{k} \alpha_{i}\left\langle s_{i}, w\right\rangle \\
& =\sum_{i=1}^{k} \alpha_{i} L f(w) \\
& =L f(w) .
\end{aligned}
$$

4 Margin of Homogeneous Predictors

Now we move towards our main result on implicit regularization for neural networks. We will show for L-homogeneous predictors that a "soft" version of the margin is non-decreasing along the (non-smooth analogue of) gradient flow. Before we can do so, we first generalize the margin beyond linear classifiers.
Definition 3. For an L-homogeneous predictor $f(\cdot ; w)$ we define the margin on a single point $\left(x_{i}, y_{i}\right)$ as

$$
m_{i}(w)=y_{i} f\left(x_{i} ; w\right)
$$

The (overall) margin of $f(\cdot ; w)$ is

$$
\gamma(w)=\min _{i} m_{i}\left(\frac{w}{\|w\|}\right)=\min _{i} \frac{m_{i}(w)}{\|w\|^{L}}
$$

Note that if f is a linear predictor then we recover the same definition as we have seen before. The margin of the maximum-margin predictor is

$$
\bar{\gamma}=\max _{w:\|w\|=1} \gamma(w) .
$$

Instead of analyzing this "hard" version of margin, we will analyze the soft margin. For a (non-averaged) loss $\mathcal{L}(w)=\sum_{i=1}^{n} \ell\left(y_{i} f\left(x_{i} ; w\right)\right)$ where $\ell(\cdot)$ is monotonic, we define the soft margin as

$$
\widetilde{\gamma}(w)=\frac{\ell^{-1}(\mathcal{L}(w))}{\|w\|^{L}}
$$

In the sequel we will focus on the exponential loss $\ell(z)=\exp (-z)$. In this case the soft margin becomes

$$
\widetilde{\gamma}(w)=\frac{-\ln \sum_{i=1}^{n} \exp \left(-y_{i} f\left(x_{i} ; w\right)\right)}{\|w\|^{L}}=\frac{-\ln \sum_{i=1}^{n} \exp \left(-m_{i}(w)\right)}{\|w\|^{L}} .
$$

Our separability assumption on the dataset will be that there exists w such that $\widetilde{\gamma}(w)>0$.

5 Main Result

We will analyze the flow given by the differential inclusion equation $\dot{w}(t) \in$ $-\partial \ln \sum_{i=1}^{n} \exp \left(-m_{i}(w(t))\right)$, but first we prove a final useful lemma.

Lemma 4. For all $w \in \mathbb{R}^{d}$, if $v \in-\partial \ln \sum_{i=1}^{n} \exp \left(-m_{i}(w)\right)$ and if the chain rule holds, then

$$
-L \ln \sum_{i=1}^{n} \exp \left(-m_{i}(w)\right) \leq\langle v, w\rangle
$$

Proof. Fix such a v. Then by the chain rule, for each $i=1, \ldots, n$ there exists $v_{i} \in \partial m_{i}(w)$ such that

$$
v=\sum_{i=1}^{n} \frac{\exp \left(-m_{i}(w)\right) v_{i}}{\sum_{j=1}^{n} \exp \left(-m_{j}(w)\right)}
$$

Then we can calculate

$$
\begin{aligned}
\langle v, w\rangle & =\sum_{i=1}^{n} \frac{\exp \left(-m_{i}(w)\right)}{\sum_{j=1}^{n} \exp \left(-m_{j}(w)\right)}\left\langle v_{i}, w\right\rangle \\
& =\sum_{i=1}^{n} \frac{\exp \left(-m_{i}(w)\right)}{\sum_{j=1}^{n} \exp \left(-m_{j}(w)\right)} L m_{i}(w) \\
& =\sum_{i=1}^{n} \frac{\exp \left(-m_{i}(w)\right)}{\sum_{j=1}^{n} \exp \left(-m_{j}(w)\right)}\left(-L \ln \left(\exp \left(-m_{i}(w)\right)\right)\right) \\
& \geq \sum_{i=1}^{n} \frac{\exp \left(-m_{i}(w)\right)}{\sum_{j=1}^{n} \exp \left(-m_{j}(w)\right)}\left(-L \ln \left(\sum_{k=1}^{n} \exp \left(-m_{k}(w)\right)\right)\right) \\
& =-L \ln \left(\sum_{k=1}^{n} \exp \left(-m_{k}(w)\right)\right) \sum_{i=1}^{n} \frac{\exp \left(-m_{i}(w)\right)}{\sum_{j=1}^{n} \exp \left(-m_{j}(w)\right)} \\
& =-L \ln \left(\sum_{k=1}^{n} \exp \left(-m_{k}(w)\right)\right)
\end{aligned}
$$

where the second step made use of lemma 2 and the inequality used the fact that $-\ln$ is monotonically decreasing.

Theorem 5. For the flow with $w(0)=0, \dot{w}(t) \in-\partial \ln \sum_{i=1}^{n} \exp \left(-m_{i}(w(t))\right)$, assuming that the chain rule holds for almost all $t \geq 0$ and assuming that there exists t_{0} such that $\widetilde{\gamma}\left(w\left(t_{0}\right)\right)>0$, then $\widetilde{\gamma}(w(t))$ is non-decreasing for $t \geq t_{0}$.

Proof. For convenience let $\widetilde{\gamma}(t)=\widetilde{\gamma}(w(t))$. Appealing to the fundamental theorem of calculus, we want to show that $\frac{d}{d t} \widetilde{\gamma}(t) \geq 0 \forall t \geq t_{0}$. Fix an arbitrary $t \geq t_{0}$ and define

$$
u(t)=-\ln \sum_{i=1}^{n} \exp \left(-m_{i}(w(t))\right), \quad v(t)=\|w(t)\|^{L}
$$

so that

$$
\widetilde{\gamma}(t)=\frac{u(t)}{v(t)}
$$

Then

$$
\frac{d}{d t} \widetilde{\gamma}(t)=\frac{\dot{u}(t) v(t)-u(t) \dot{v}(t)}{v(t)^{2}}
$$

Note that when $\widetilde{\gamma}(t)>0$ we must have $w \neq 0$ so $v(t)>0$. Now we analyze both $\dot{u}(t)$ and $\dot{v}(t)$. Since $\dot{w}(t) \in \partial u(t)$ and we assume the chain rule holds, we have for almost all t that

$$
\begin{aligned}
\dot{u}(t) & =\|\dot{w}(t)\|^{2} \\
& \geq\|\dot{w}(t)\|\left\langle\frac{w(t)}{\|w(t)\|}, \dot{w}(t)\right\rangle \\
& \geq \frac{L u(t)\|\dot{w}(t)\|}{\|w(t)\|}
\end{aligned}
$$

where the first inequality was by Cauchy-Schwarz and the second was by lemma 4 . Next, again using Cauchy-Schwarz

$$
\begin{aligned}
\dot{v}(t) & =L\|w(t)\|^{L-1}\left\langle\frac{w(t)}{\|w(t)\|}, \dot{w}(t)\right\rangle \\
& \leq L\|w(t)\|^{L-1}\|\dot{w}(t)\|
\end{aligned}
$$

Using these upper and lower bounds we have that

$$
\begin{aligned}
\dot{u}(t) v(t)-u(t) \dot{v}(t) & \geq \frac{L u(t)\|\dot{w}(t)\|}{\|w(t)\|} v(t)-u(t) L\|w(t)\|^{L-1}\|\dot{w}(t)\| \\
& =u(t) L\|w(t)\|^{L-1}\|\dot{w}(t)\|-u(t) L\|w(t)\|^{L-1}\|\dot{w}(t)\| \\
& =0
\end{aligned}
$$

(where $v(t)>0$ as explained above and also $u(t)>0$ because $\widetilde{\gamma}(t)>0$).

