Lecture 12 Neural Tangent Kernel II

Instructor: Yingyu Liang
Date:
Scriber: Jitian Zhao

1 NTK on Two-layer Neural Networks with ReLU

Consider regression setting with dataset $\left(x_{i}, y_{i}\right)_{i=1}^{n}, x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$ and $\left\|x_{i}\right\|=1,\left|y_{i}\right| \leq 1$. The squared loss is defined to be:

$$
\begin{equation*}
L(w)=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i} ; w\right)\right)^{2} \tag{1}
\end{equation*}
$$

Define prediction vector $u=\left[f\left(x_{1} ; w\right), \ldots, f\left(x_{n} ; w\right)\right]^{\top} \in \mathbb{R}^{n}$ and for gradient flow, we assume chain rule holds here:

$$
\begin{equation*}
\frac{d w(t)}{d t}=-\nabla L(w) \tag{2}
\end{equation*}
$$

Consider two-layer neural networks with ReLU activation

$$
f(x ; w)=\frac{1}{\sqrt{m}} \sum_{i=1}^{m} a_{i} \sigma\left(\left\langle w_{i}, x\right\rangle\right)
$$

where $\sigma(z)=\max \{0, z\}$. Initialize the weights by $a_{i}(0) \sim \operatorname{uniform}\{-1,1\}$ and $w_{i}(0) \sim$ $N\left(0, I_{d}\right)$, and the training updates only w_{i} 's.

For weights w, let

$$
H_{i j}=\left\langle\frac{\partial f\left(x_{i} ; w\right)}{\partial w}, \frac{\partial f\left(x_{j} ; w\right)}{\partial w}\right\rangle .
$$

Let $H(t)$ be a shorthand for $H(w(t))$ and let $H^{*}=\mathbb{E}_{w(0)}[H(0)]$.
Theorem 1. Assume $\lambda_{0}=\lambda_{\min }\left(H^{*}\right)>0$. If $m=\Omega\left(\frac{n^{6}}{\lambda^{4} \delta^{3}}\right)$, then with probability $\geq 1-\delta$,

$$
\|u(t)-y\|_{2}^{2} \leq \exp \left(-\lambda_{0} t\right)\|u(0)-y\|_{2}^{2} .
$$

The proof of the theorem is based on the following lemma on the dynamics of u :

Lemma 2.

$$
\begin{equation*}
\frac{d u(t)}{d t}=-H(t)[u(t)-y] \tag{3}
\end{equation*}
$$

Proof. This lemma was proved in the previous lecture.
To apply the above lemma, we need to lower bound $H(t)$. We first show that $H(0) \approx H^{*}$.
Lemma 3. Assume $\left\|x_{i}\right\| \leq 1$ and $\sigma(z)=\max \{0, z\}$. If the number of hidden neuron $m \geq \Omega\left(\epsilon^{-2} n^{2} \log \left(\frac{n}{\delta}\right)\right)$, then with probability at least $1-\delta$ over the random initialization,

$$
\left\|H(0)-H^{*}\right\|_{2} \leq \epsilon .
$$

Proof. This lemma was proved in the previous lecture.
We then show that if the weight $w(t)$ is near $w(0)$, then $H(t) \approx H(0)$.
Lemma 4. With probability $\geq 1-\delta$ over $w(0)$, for any $\left\{w_{k}\right\}_{k=1}^{m}$ satisfying

$$
\left\|w_{k}-w_{k}(0)\right\|^{2} \leq \frac{\sqrt{2 \pi} \delta \lambda_{0}}{16 n^{2}}:=R, \forall k \in[m],
$$

we have $\|H-H(0)\|_{2} \leq \frac{\lambda_{0}}{4}$ and thus $\lambda_{\min }(H) \geq \frac{\lambda_{0}}{2}$.
Proof. Define event $A_{i k}=\left\{\exists w_{k},\left\|w_{k}-w_{k}(0)\right\| \leq R, \mathbf{1}\left[x_{i}^{\top} w_{k}(0) \geq 0\right] \neq \mathbf{1}\left[x_{i}^{\top} w_{k} \geq 0\right]\right\}$.
We first bound the probability of $A_{i k}$:

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i k}\right) \leq \operatorname{Pr}\left(\left|x_{i}^{\top} w_{k}(0)\right| \leq R\right) \leq \frac{2 R}{\sqrt{2 \pi}} \tag{4}
\end{equation*}
$$

where the first inequality comes from the fact that $\left|x_{i}^{\top} w_{k}-x_{i}^{\top} w_{k}(0)\right| \leq\left\|x_{i}\right\|\left\|w_{k}-w_{k}(0)\right\| \leq R$, and the second from the anti-concentration of Gaussians.

Applying the above inequality we can bound individual entry as following:

$$
\begin{align*}
\mathbb{E}\left[\left|H_{i j}(0)-H_{i j}\right|\right] & \leq \mathbb{E}\left[\left\lvert\, \frac{1}{m} x_{i}^{\top} x_{j} \sum_{k=1}^{m}\left(\mathbf{1}\left[x_{i}^{\top} w_{k}(0) \geq 0\right] \mathbf{1}\left[x_{j}^{\top} w_{k}(0) \geq 0\right]\right.\right.\right. \tag{5}\\
& \left.\left.-\mathbf{1}\left[x_{i}^{\top} w_{k} \geq 0\right] \mathbf{1}\left[x_{j}^{\top} w_{k} \geq 0\right]\right) \mid\right] \tag{6}\\
& \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\mathbf{1}\left[A_{i k} \cup A_{j k}\right]\right] \tag{7}\\
& \leq \frac{1}{m} \sum_{k=1}^{m}\left[\operatorname{Pr}\left(A_{i k}\right)+\operatorname{Pr}\left(A_{j k}\right)\right] \tag{8}\\
& \leq \frac{4 R}{\sqrt{2 \pi}} \tag{9}
\end{align*}
$$

With the bound for the individual entry, we can further bound the difference between two matrices as following:

$$
\begin{align*}
\mathbb{E}\left[\|H-H(0)\|_{2}\right] & \leq \mathbb{E}\left[\|H-H(0)\|_{F}\right] \tag{10}\\
& \leq \mathbb{E}\left[\sum_{i j}\left|H_{i j}(0)-H_{i j}\right|\right] \tag{11}\\
& \leq \frac{4 n^{2} R}{\sqrt{2 \pi}} \tag{12}\\
& \leq \frac{4 n^{2}}{\sqrt{2 \pi}} \frac{\sqrt{2 \pi} \delta \lambda_{0}}{16 n^{2}} \tag{13}\\
& =\frac{\delta \lambda_{0}}{4} \tag{14}
\end{align*}
$$

Thus, according to Markov's inequality, we know that $\operatorname{Pr}\left[\|H-H(0)\|_{2} \geq \frac{\lambda_{0}}{4}\right] \leq \frac{\delta \lambda_{0} / 4}{\lambda_{0} / 4}=\delta$ and the proof is done.

Lemma 5. Suppose for $0 \leq s \leq t, \lambda_{\min }(H(s)) \geq \frac{\lambda_{0}}{2}$, then we have following result:

1. $\|u(t)-y\|_{2}^{2} \leq \exp \left(-\lambda_{0} y\right)\|u(0)-y\|_{2}^{2}$.
2. $\left\|w_{k}(t)-w_{k}(0)\right\|_{2} \leq s \sqrt{n}\|u(0)-y\|_{2} /\left(\lambda_{0} \sqrt{m}\right):=R^{\prime}$.

Proof. For the first result:

$$
\begin{align*}
\frac{d\|u(t)-y\|_{2}^{2}}{d t} & =2(u(t)-y)^{\top} \frac{d u(t)}{d t} \tag{15}\\
& =-2(u(t)-y)^{\top} H(t)(u(t)-y) \tag{16}\\
& \leq-2\|u(t)-y\|_{2}^{2} \frac{\lambda_{0}}{2} \tag{17}\\
& \leq-\lambda_{0}\|u(t)-y\|_{2}^{2} . \tag{18}
\end{align*}
$$

This means we can further obtain the result from Grönwall's inequality (see e.g., wiki link):

$$
\|u(t)-y\|_{2}^{2} \leq \exp \left(\lambda_{0} t\right)\|u(0)-y\|_{2}^{2} .
$$

For the second result, define $\dot{w}(s):=-\nabla L(w(s))$:

$$
\begin{gather*}
\left\|w_{k}(t)-w_{k}(0)\right\|_{2}=\left\|\int_{0}^{t} \dot{w}_{k}(s) d s\right\|_{2} \tag{19}\\
\leq \int_{0}^{t}\left\|\dot{w}_{k}(s)\right\|_{2} d s \tag{20}\\
\left\|\dot{w}_{k}(s)\right\|=\left\|\sum_{i=1}^{n}\left(f\left(x_{i} ; w(s)\right)-y_{i}\right) \frac{1}{\sqrt{m}} a_{k} \mathbf{1}\left[w_{k}(s)^{\top} x_{i} \geq 0\right] x_{i}\right\|_{2} \tag{21}\\
\leq \frac{1}{\sqrt{m}} \sum_{i=1}^{n}\left|f\left(x_{i} ; w(s)\right)-y_{i}\right| \tag{22}\\
\leq \frac{1}{\sqrt{m}} \sqrt{n} \sqrt{\sum_{i=1}^{n}\left(u_{i}(s)-y_{i}\right)^{2}} \tag{23}\\
\leq \sqrt{\frac{n}{m}} \exp \left(-\lambda_{0} s / 2\right)\|u(0)-y\|_{2} . \tag{24}
\end{gather*}
$$

Plug (24) into (20) we have:

$$
\begin{align*}
\left\|w_{k}(t)-w_{k}(0)\right\|_{2} & \leq \sqrt{\frac{n}{m}}\|u(0)-y\|_{2} \int_{0}^{t} \exp \left(-\lambda_{0} s / 2\right) d s \tag{25}\\
& =\left\|w_{k}(t)-w_{k}(0)\right\|_{2} \tag{26}\\
& \leq \sqrt{\frac{n}{m}}\|u(0)-y\|_{2} \frac{2}{\lambda_{0}}:=R^{\prime} . \tag{27}
\end{align*}
$$

With all the lemmas, to prove Theorem 1 , it is sufficient to ensure that $R^{\prime} \leq R$, which requires

$$
m=\Omega\left(\frac{n^{5}\|u(0)-y\|_{2}^{2}}{\lambda_{0}^{4} \delta^{2}}\right)
$$

One can show that $\mathbb{E}\|u(0)-y\|_{2}^{2}=O(n)$, and then by Markov's inequality, $\|u(0)-y\|_{2}^{2} \leq O\left(\frac{n}{\delta}\right)$ with probability $\geq 1-\delta$. The proof of Theorem 1 is then completed.

