CS 839: Theoretical Foundations of Deep Learning

Spring 2023

Lecture 14 Mean Field Analysis of Neural Networks

Instructor: Yinqyu Lianq

Date:

Scriber: Yiyou Sun

1 Continuous Setting

Consider the traditional classification task where $x \in \mathbb{R}^d$, $y \in \mathbb{R}$. The goal is to find a function $f: \mathbb{R}^d \to \mathbb{R}$, such that:

$$\min_{f} Q(f) = L(f) + R(f), L(f) = E_{x,y}[l(f(x)), y)],$$

where $l(\cdot)$ is defined to be the loss function and R is a regularization function. Similar to Kernel methods, consider the two-level network given below to represent f:

$$f(\omega, \rho, x) = \int_{\mathbb{R}^d} \sigma(\theta, x) \omega(\theta) \rho(\theta) d\theta \tag{1}$$

where $\sigma(\theta, x) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a known real-valued function, $\omega(\theta) : \mathbb{R}^d \to \mathbb{R}$ is a real value function of θ , and $\rho(\theta)$ is a probability density over θ . For regularizer, we use

$$R(\omega, \rho) = \lambda_1 R_1(\omega, \rho) + \lambda_2 R_2(\rho)$$

where

$$R_1(\omega, \rho) = \int r_1(\omega(\theta))\rho(\theta)d\theta, r_1(\omega) = |\omega|^2$$
$$R_2(\rho) = \int r_2(\theta)\rho(\theta)d\theta, r_2(\theta) = ||\theta||^2$$

Next, we show a discrete NN approximates the continuous one when hidden nodes go to infinity and then drive the evolution rule of $\rho(\theta)$ and $\omega(\theta)$ from the (noisy) GD algorithm when the step size becomes small.

2 Discrete Setting

Consider a finite NN with the following form to approximate $f(\omega, \rho, x)$:

$$\widehat{f}(\mu, \Theta, x) = \frac{1}{m} \sum_{j=1}^{m} \mu^j \sigma(\theta^j, x)$$
 (2)

where $\Theta = \{\theta^j\}_{j=1}^m$.

The regularization terms are:

$$\widehat{R}_1(\mu,\Theta) = \frac{1}{m} \sum_{j=1}^m r_1(\mu^j), \widehat{R}_2(\Theta) = \frac{1}{m} \sum_{j=1}^m r_2(\theta^j),$$
(3)

and the training objective is:

$$\widehat{Q}(\mu,\Theta) = \mathbb{E}_{x,y} l(\widehat{f}(\mu,\Theta,x),y) + \lambda_1 \widehat{R}_1(\mu,\Theta) + \lambda_2 \widehat{R}_2(\Theta). \tag{4}$$

We can solve it through the standard (noisy) GD, the algorithm is given by:

Step 0. Initialize $\mu_0 \sim P_{\mu,0}(\mu), \theta_0^j \sim P_{\theta,0}(\theta)$

Step 1. Update θ^j by

$$\theta_{t+\Delta t}^{j} = \theta_{t}^{j} - \Delta t \nabla_{\theta_{j}} \left[\widehat{Q} \left(\mu_{t}, \Theta_{t} \right) \right] - \sqrt{\lambda_{3}} \xi_{t+1}^{j},$$

where Δt is the step size and $\xi_{t+1}^{j} \sim N\left(0, \sqrt{2\Delta t}I_{d}\right)$.

Step 2. Update μ^j by

$$\mu_{t+\Delta t}^{j} = \mu_{t}^{j} - \Delta t \nabla_{\mu^{j}} \left[\widehat{Q} \left(\mu_{t}, \Theta_{t} \right) \right] - \sqrt{\lambda_{3}} \zeta_{t+1}^{j},$$

where $\zeta_{t+1}^j \sim N(0, \sqrt{2\Delta t})$.

2.1 Plain GD

We first consider the unnoisy setting where $\lambda_3 = 0$. We have the following Lemma.

Lemma 1. Suppose $\lambda_3 = 0$. Suppose at time $t \geq 0$, we have $\theta_t^j \sim \rho_t$, and suppose $\mu_t^j = \omega_t(\theta_t^j)$. Assume l' is continuous and σ is twice differentiable. For all x, we have:

$$\lim_{m \to \infty} \widehat{f}(\mu_t, \Theta_t, x) = f(\omega_t, \rho_t, x)$$
(5)

Furthermore, when $\Delta t \to 0, m \to \infty$, we can derive,

$$\frac{d\rho_t(\theta)}{dt} = -\nabla_{\theta} \cdot \left[\rho_t(\theta) g_2(t, \theta, \omega_t(\theta)) \right]
\frac{d\omega_t(\theta)}{dt} = g_1(t, \theta, \omega_t(\theta)) - \nabla_{\theta} \left[\omega_t(\theta) \right] g_2(t, \theta, \omega_t(\theta)),$$

where ∇_{θ} means the divergence, g_1 and g_2 satisfy:

$$g_1(t, \theta, v) = -\mathbb{E}_{x,y} \left[l' \left(f \left(\omega_t, \rho_t, x \right), y \right) \sigma(\theta, x) \right] - \lambda_1 \nabla_v \left[r_1(v) \right]$$

$$g_{2}(t,\theta,v) = -\mathbb{E}_{x,y}\left[l'\left(f\left(\omega_{t},\rho_{t},x\right),y\right)v\nabla_{\theta}\sigma(\theta,x)\right] - \lambda_{2}\nabla_{\theta}\left[r_{2}(\theta)\right].$$

To prove the lemma, we utilize the tool with Fokker-Planck Equation to compute the evolution.

Background with Fokker-Planck Equation Suppose the movement of a particle in *m*-dimensional space can be characterized by the stochastic differential equation given below:

$$dx_t = g(x_t, t) d_t + \sqrt{2\beta^{-1}} \Sigma dB_t$$

Let $x_t \sim p(x,t)$, the evolution of p(x,t) is given by:

$$\frac{\partial p(x,t)}{\partial t} = \frac{\sum \sum^{\top}}{\beta} \nabla^2 p(x,t) - \nabla \cdot [p(x,t)g(x_t,t)]$$

Proof of Lemma 1. Let the $p_t(\theta, v)$ as the joint distribution for (θ, v) :

$$(\theta_t^j, \mu_t^j) \sim p_t(\theta, v) = \rho_t \delta (v = \omega_t(\theta))$$

We can rewrite $f(\omega_t, \rho_t, x)$ as:

$$f(\omega_t, \rho_t, x) = \int_{\mathbb{R}^{d+1}} \sigma(\theta, x) p_t(\theta, v) d\theta dv.$$

By the Law of the Large number, when $m \to \infty$,

$$\widehat{f}(\mu_t, \Theta_t, x) \to f(\omega_t, \rho_t, x)$$
.

Now we denote

$$\widehat{g}_{2}(t,\theta,v) = -\mathbb{E}_{x,y}\left[l'\left(\widehat{f}\left(\mu_{t},\Theta_{t},x\right),y\right)v\nabla_{\theta}\sigma(\theta,x)\right] - \lambda_{2}\nabla_{\theta}\left[r_{2}(\theta)\right]$$

From the update rule of GD, we have $\theta_{t+1}^j = \theta_t^j + \Delta t \widehat{g}_2(t, \theta_t^j, \mu_t^j)$. Let $\Delta t \to 0$, using $\mu_t^j = \omega_t(\theta_t^j)$, we have

$$\frac{d\theta_t^j}{dt} = \widehat{g}_2\left(t, \theta_t^j, \omega_t\left(\theta_t^j\right)\right)$$

By applying Fokker-Planck equation,

$$\frac{d\rho_t(\theta)}{dt} = -\nabla_{\theta} \cdot \left[\rho_t(\theta)\widehat{g}_2\left(t, \theta, \omega_t(\theta)\right)\right]$$

As $m \to \infty$, and because l' is continuous, $\sigma(\theta, x)$ and ρ_t are also second-order smooth, we obtain:

$$\nabla_{\theta} \cdot \left[\rho_t(\theta) \widehat{g}_2\left(t, \theta, \omega_t(\theta)\right) \right] - \nabla_{\theta} \cdot \left[\rho_t(\theta) g_2\left(t, \theta, \omega_t(\theta)\right) \right] \stackrel{\text{a.s.}}{\to} 0$$

To prove the evolution form for $\omega_t(\theta)$, we let:

$$\widehat{g}_1(t,\theta,v) = -\mathbb{E}_{x,y} \left[l' \left(\widehat{f} \left(\mu_t, \Theta_t, x \right), y \right) \sigma(\theta, x) \right] - \lambda_1 \nabla_v r_1(v).$$

Then, (ignoring the superscript j since all j have the same calculation)

$$\omega_{t+\Delta t} (\theta_{t+\Delta t})$$

$$=\omega_{t} (\theta_{t+\Delta t}) + \frac{d\omega_{t} (\theta_{t+\Delta t})}{dt} \Delta t + o(\Delta t)$$

$$=\omega_{t} (\theta_{t} + \widehat{g}_{2} (t, \theta_{t}, \omega_{t}(\theta_{t})) \Delta t + o(\Delta t)) + \frac{d\omega_{t} (\theta_{t+\Delta t})}{dt} \Delta t + o(\Delta t)$$

$$=\omega_{t} (\theta_{t}) + [\nabla_{\theta} \omega_{t}(\theta_{t})] \cdot \widehat{g}_{2} (t, \theta_{t}, \omega_{t}(\theta_{t})) \Delta t + \frac{d\omega_{t} (\theta_{t+\Delta t})}{dt} \Delta t + o(\Delta t)$$

By the update rule $\omega_{t+\Delta t}\left(\theta_{t+\Delta t}\right) = \omega_{t}\left(\theta_{t}\right) + \widehat{g}_{1}\left(t,\theta_{t},\omega_{t}(\theta)\right)\Delta t$, we have:

$$\lim_{\Delta t \to 0} \frac{d\omega_t \left(\theta_{t+\Delta t}\right)}{dt} = \widehat{g}_1 \left(t, \theta_t, \omega_t(\theta)\right).$$

The proof is finished by Let $\Delta t \to 0$, and let $m \to \infty$.

References