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To analyze the trade-off, we compare two scenarios:

• Specific representation: the representation is pre-trained only on the unlabeled data
from one target task.

• Universal representation: the representation is pre-trained on the mixture of several
tasks.

For both representations, we would like to evaluate two performance criteria as follows

• Label efficiency on the target task: measured by the prediction accuracy (generaliza-
tion) of learning a classifier on top of the representation, using labeled data from the
target task.

• Universality: measure by the average accuracy on all the tasks, i.e., for each task, learn
a classifier on top of the representation using labeled data from the task, evaluate the
accuracy, and then take the average over all tasks.

We will need to specify the data distribution in each task, how the representation is
learned via contrastive learning, and how the evaluation is done.
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Figure 1: Illustration of the features in our data distributions.

1 Problem Setup

Data distributions. Suppose we have T tasks, with data distributions Dt(t = 1, . . . , T ).
The data distribution is specified by first sampling a hidden representation z ∈ Rd, and then
generating the input x ∈ Rd and the label y ∈ R by linear functions on z.

All tasks share a public feature S of size s, and each task Dt additionally owns a private
disjoint feature set Pt of size r−s, i.e., Pt∩S = ∅ and Pt1 ∩Pt2 = ∅ for t1 ̸= t2 (Fig. 1). Then

1



Rt = S ∪ Pt are called the invariant features for Dt. All invariant features are R = ∪T
t=1Rt.

The other features are called spurious features U = [d] \R. For simplicity, consider the case
s = 1 and r = 2, i.e., there is only one shared feature, and each task has only one private
feature.

In task Dt, the (x, x+) are generated as follows:

zRt ∼ N (0, I), zR\Rt = 0, zU ∼ N (0, I), z = [zR; zU ], x = g(z), (1)

z+U ∼ N (0, I), z+ = [zR; z
+
U ], x+ = g(z+), (2)

and x− is simply an i.i.d. copy from the same distribution as x.
The generating function g is a linear function, i.e., x = g(z) = Mz where M ∈ Rd×d

is an orthonormal dictionary. Since linear probing has strong performance on pre-trained
representations, we thus assume that the label in each task t is linear in its invariant features
y = (u∗

t )
⊤zRt for some u∗

t ∈ Rr.

Constrative learning. In practice, multiple independent negative examples are used, and
thus we consider the following contrastive loss

min
ϕ∈Φ

E(x,x+)

[
ℓ
(
ϕ(x)⊤(ϕ(x+)− Ex−ϕ(x−))

)]
(3)

for a convex and decreasing ℓ(t) to pre-train a representation ϕ.
Assume the representations are linear functions with weights of bounded spec-

tral/Frobenius norms:

Φ = {ϕ(x) = Wx : W∈Rk×d, ∥W∥≤1, ∥W∥F≤
√
r}.

Here the norm bounds are chosen to be the minimum values to allow recovering the invariant
features in the target task, i.e., there exists ϕ ∈ Φ such that ϕ(x) = [zRt ;0].

Evaluation. Then, when using ϕ for prediction in the target task Dt, the predictor class
should contain a predictor matching the ground-truth label:

Fϕ,t = {f(z) = u⊤z : u ∈ Rk, ∥u∥ ≤ Bϕ,t} (4)

where Bϕ,t is the minimum value such that there exists ut ∈ Fϕ,t with y = u⊤
t ϕ(x) on Dt.

2 Analysis of the Representation Learned

First, we know the following useful property of the constrative loss.
For each Dt,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
(5)

= E(z,z+)

[
ℓ
(
(WMz)⊤(WMz+ − Ez− [WMz−])

)]
(6)

= E(z,z+)

[
ℓ
(
z⊤(M⊤W⊤WM)(z+ − Ez− [z

−])
)]

(7)

≥ EzR

[
ℓ
(
(EzU [z])

⊤M⊤W⊤WM(Ez+U
[z+]− Ez− [z

−])
)]

(8)

= EzR

[
ℓ
(
[zR;0]

⊤M⊤W⊤WM([zR;0]− 0)
)]

(9)

= EzR

[
ℓ
(
∥WM [zR;0]∥2

)]
(10)
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where the inequality comes from the convexity of ℓ(t) and Jensen’s inequality. The equality
holds if and only if WMz does not depend on zU and WMz+ does not depend on z+U , so the
optimal solution should satisfy this condition.

Let WM = [AR, AU ] where AR ∈ Rk×k, AU ∈ Rk×(d−k). By rotational invariance of zS,
and zPt , without loss of generality, we can assume AR = QA where A is a diagonal matrix
with diagonal entries ajj’s and Q is any orthonormal matrix. Furthermore, AU = 0 in the
optimal solution since it does not affect the loss but only decreases the norm bound on AR.
So on data from the task Dt,

EDt

[
ℓ
(
∥WM [zR;0]∥2

)]
= EzRt

[
ℓ

(∑
j∈Rt

a2jjz
2
j

)]
. (11)

Proposition 1. The representation ϕ∗ obtained on an even mixture of data from all the

tasks {Dt : 1 ≤ t ≤ T} satisfies ϕ∗ ◦ g(z) = Q
(∑

j∈S zjej +
∑

j∈R\S

√
1
T
zjej

)
, where ej’s are

the basis vectors and Q is any orthonormal matrix.

Proof. On the mixture,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
(12)

≥ 1

T

T∑
t=1

E{zj}

[
ℓ

(∑
j∈Rt

a2jjz
2
j

)]
(13)

=
1

T

T∑
t=1

E{zj}

[
ℓ

(∑
j∈S

a2jjz
2
j +

∑
j∈Pt

a2jjz
2
j

)]
(14)

:=g({ajj}. (15)

Let Z =
∑

j∈S z
2
j , Zt =

∑
j∈Pt

z2j . Let α denote the coefficient α2
jj for j ∈ S, and αt

denote that α2
jj for j ∈ Pt. Then Z ∼ χ2

s = χ2
1 and Zt ∼ χ2

r−s = χ2
1, and we have:

g({ajj}) = g({α, αt}) (16)

=
1

T

T∑
t=1

E [ℓ (αZ + αtZt)] (17)

≥ E

[
ℓ

(
αZ + Z1

T∑
t=1

1

T
αt

)]
. (18)

The inequality comes from the convexity of ℓ(t) and Jensen’s inequality. So the minimum is
achieved when αt := β for any t ∈ [T ], leading to

g({α, αt}) = E [ℓ (αZ + βZ1)] (19)

subject to the constraints αs + Tβ(r − s) = α + Tβ ≤ r, 0 ≤ α, β ≤ 1. Then we get

ϕ∗ ◦ g(z) = W ∗Mz = Q
(∑

j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
for some α = 1, β = 1

T
, where

ej’s are the basis vectors and Q is any orthonormal matrix.
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Proposition 2. The representation ϕ∗
t obtained on data from Dt satisfies ϕ∗

t ◦ g(z) =

Q
(∑

j∈Rt
zjej

)
where ej’s are the basis vectors and Q is any orthonormal matrix.

Proof. With only one shared and only one private feature, following a similar argument as

above, we get ϕ∗
t ◦ g(z) = Q

(∑
j∈Rt

zjej

)
, where ej’s are the basis vectors and Q is any

orthonormal matrix.

We can see that universal representation encodes all useful features but down-weights
the private feature for the target task, and thus leads to the trade-off.

The analysis for more general cases can be seen in [1].
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