CS 839: Theoretical Foundations of Deep Learning	Spring 2023	
Lecture 19 Complexity I: Training a 3-Node is NP-Hard		
Instructor: Yingyu Liang	Date:	Scriber: Nikos Zarifis

1 Intro to NP-Completeness

Assume that I have problems A, B. We say that that B is as hard as A, if there exists a polynomial reduction from A to B. Meaning that if I can solve B then I can solve A. We write $A \leq_{P} B$. One known NP-complete problem is called "Set-Splitting" and is the following:

Set-Spliting(SS):

Given: S, a collection of subsets $C=\left\{C_{i} \mid C_{i} \subset S\right\}$.
Question: Does there exists S_{1}, S_{2} with $S_{1} \cap S_{2}=\emptyset$, such that $S_{1} \cup S_{2}=S$, and for all i, it holds $C_{i} \not \subset S_{1}$ and $C_{i} \not \subset S_{2}$.

Note that the problem is still hard assuming $|C|=O(|S|)$.
In the section below, we are going to reduce the "Set-Spliting" to the training a 3-node NN. This was proved in [1].

2 Training a 3-Node Network

Figure 1: The 3-Node network

Let $a=\left[a_{1}, \ldots, a_{n}\right] \in \mathbb{R}^{n}$ and $a_{0} \in \mathbb{R}$. We define the following threshold function:

$$
f_{i}(z)= \begin{cases}1 & \text { if } a \cdot z>a_{0} \\ -1 & \text { o.w. }\end{cases}
$$

This is equivalent to $f_{i}(z)=\operatorname{sign}\left(a \cdot z-a_{0}\right)$. The main question is the following: Question: Given a set of $O(n)$ examples $(x, y) \in\{0,1\}^{n} \times\{ \pm 1\}$. Do there exists, f_{1}, f_{2}, f_{3} such that the 3 -node network has training error 0 ?

In fact, we are going to show that this problem is hard and in fact it is NP-Complete, by showing a reduction from Set-Spliting problem. Hence, we show the following:

Theorem 1. Training 3-node NN is NP-Complete.
Proof. First, we provide a geometric intuition for this problem: Each point is a point of the n-dimensional hypercube. The two functions f_{1}, f_{2} are linear thresholds functions, therefore, each one define a hyperplane. Therefore, if they are not parallel, they divide the space into four quadrants. Because the f_{3} is a linear threshold, it can distinguish between points on different quadrants. So, the problem of training a 3-node, is equivalent to the following problem:
Given a set of labeled points in the n-dimensional hypercube does there exists:
Case 1: A simple plane separates ± 1.
Case 2: Two planes such that either one quadrant contains all positive labels $(+1)$ and no negative points, or one quadrant contains all negative labels (-1) and no positive points.

We are going to show that case 2 is the hard one, which means that this problem is NP-complete.
Problem 2LCPBE: Given n-labeled points. Do there exist planes f_{1}, f_{2} such that the quadrant with both positive predictions contains all positive points and no negative labeled points?
We are going to reduce the problem of Set-Splitting to 2LCPBE. Given an instance of Set-Splitting: $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}, C=\left\{C_{1}, C_{2}, \ldots\right\}$ and $\left\{C_{j} \subseteq S\right\}$, we are going to convert it to the following instance of 2LCPBE:

- Let the origin: $(0,0, \ldots, 0)$ have the label + .
- for each s_{i}, we make a point $p_{i}=(0, \ldots, 1, \ldots 0)$, where the 1 is in the i-th position, and we label it - .
- for all $C_{j}=\left\{s_{j 1}, \ldots, s_{j k}\right\}$, we put at the point that has 1 at the positions $j 1, j 2, \ldots, j k$ and the + label, that point is $p_{j 1}+p_{j 2}, \ldots, p_{j, k}$.

For example consider the instance: $S=\left\{s_{1}, s_{2}, s_{3}\right\}, C_{1}=\left\{s_{1}, s_{2}\right\} C_{2}=\left\{s_{2}, s_{3}\right\}$. We have $[(0,0,0), 1]$ and $[(1,0,0),-1],[(0,1,0),-1],[(0,0,1),-1]$ and $[(1,1,0), 1],[(0,1,1), 1]$.

Lemma 2. The instance of $S S$ has a solution is equalivalent to constructed instance of $2 L C P B E$ has.

Proof. For the first direction. Given S_{1}, S_{2} from the solution of set splitting, we consider the following:

Consider the hyperplanes: P_{1}, P_{2} with the following form: $P_{j}: a_{1} x_{1}+\ldots+a_{n} x_{n}+1 / 2=0$, where

$$
a_{i}=\left\{\begin{array}{lll}
-1 & \text { if } & s_{i} \in S_{j} \\
n & \text { ow }
\end{array}\right.
$$

You can see that the following hold:

- P_{j} predicts + for $(0,0, \ldots, 0)$
- P_{j} predicts + for training point with +
- P_{j} predicts - for p_{i} if $s_{i} \in S_{i}$.

Therefore, the intersection(the quadrant) of hyperplanes: $P_{1} \geq 0, P_{2} \geq 0$, contains all the points with + and no point with - .
Let S_{1} (resp. S_{2}) be the set that contains that only in P_{1} (resp. P_{2}) get -. Place the rest of the points that both planes separates with - arbitrary in S_{1} or $S_{2} . S_{1} \cup S_{2}=S$ as all the points are either in S_{1} or S_{2}.

Let $C_{j}=\left\{s_{j 1}, \ldots, s_{j k}\right\}$, it remains to show that $C_{j} \not \subset S_{1}, S_{2} . P_{1}$ predicts positive for $p_{j 1}+\ldots+p_{j k}$ if $c_{j} \subset S_{1}$ but then this points would not be in one quadrant with only positive points which contradicts the assumption of 2LCPBE. Similarly for P_{2} and S_{2}.

Now we have shown that the training 3-node is NP-complete if one quadrant contains all the positive points, so the f_{3} should be the AND function between f_{1} and f_{2}. Now, we will add some more points to make the output to always require that conditions. We extend the dimension of our points to $n+3$ and put 0 in the new components of the previous points. This is left as homework; you can also refer to the reference.

References

[1] Avrim L Blum and Ronald L Rivest. Training a 3-node neural network is np-complete. Neural Networks, 5(1):117-127, 1992.

