
CS 839: Theoretical Foundations of Deep Learning Spring 2023

Lecture 3 Approximation I

Instructor: Yingyu Liang Date: Scriber: Zhenmei Shi

1 Overview

In the previous lecture, we decomposed the risk into three parts: approximation, estima-
tion/generalization and optimization. In this lecture we will focus on approximation power
of neural networks.

2 Problem Setup

2.1 Two-Layer Neural Network

Let X denote the input space, and Y the label space. X Ď Rd, and Y “ t´1,`1u for binary
classification. The hypothesis/model class H is 2-layer neural networks which can also be
thought of as a 1-hidden-layer neural network with functions h : X ÞÑ Y ,

hpxq “

m
ÿ

i“1

aiσpxwi,xy ` biq “ aσpWx ` bq, (1)

where wi P Rd, ai, bi P R,W “ rwJ
1 , . . . ,w

J
msJ, b P Rm, a P R1ˆm, and σ is an activation

function. Below is a picture to better understand a neural network’s set of parameters
applied to the input.

Figure 1: Example of a 2-layer neural network given parameters

1

Example 1 (Activation Functions). Some common activation functions are:

• ReLU: σpzq “ maxp0, zq.

• Sigmoid: σpzq “ 1
1`expp´zq

.

Figure 2: ReLU and Sigmoid

2.2 L-Layer Neural Network

Now to define a Deep Neural Network (DNN) or multiple-layer neural network which has L
layers:

h0pxq “ x

hjpxq “ σjpWjhj´1pxq ` bjq

hpxq “ hLpxq,

where x P Rd,W1 P Rm1ˆd,Wi P Rmiˆmi´1 for i “ 2, . . . , L´1,WL P RkˆmL´1 and bi P Rmi .
The function h is a mapping of h : Rd ÞÑ Rk. Normally, the same activation function is used
in all layers except the last one.

For multi-class classification with y P t1, . . . , ku, k is the number of classes in the problem,
the last layer uses the softmax function to generate a probabilistic vector, and the output
hpxq is regarded as the probabilities over the k classes.

For binary classification with y P t´1,`1u, typically k “ 1, the last layer uses the sigmoid
function to generate a value in p0, 1q, and the output hpxq is regarded as the probability of
the label `1.

For regression with y P R, typically k “ 1, the last layer uses no activation function (or
equivalently, uses the identity function as the activation), and the output hpxq is regarded
as an estimation of y.

Example 2 (Loss Functions). Some typical examples of loss functions are:

2

• Cross-entropy loss for multi-class classification: lpŷ, yq “ ´ logpŷyq “ ´
řk

i“1 ȳi logpŷiq,
where y P t1, . . . , ku, ȳ is the one-hot encoding of y, ŷ P Rk is a probabilistic vector
(i.e., the softmax output of the network).

• Logistic loss for binary classification: lpŷ, yq “ logp1` expp´ŷyqq, where y P t´1,`1u,
and ŷ P R is the output of the network (usually the last layer uses no activation
function).

• Square loss for regression: lpŷ, yq “ pŷ ´ yq2, where y P R, and ŷ P R is the output of
the network (usually the last layer uses no activation function).

For L “ 2,

hpxq “ σ2pW2σ1pW1x ` b1q ` b2q,

is equivalent to (1) when σ2 is the identity function, W2 “ a, and b2 “ 0.

3 Approximation

Recall that the risk is,

Rphq “ Epx,yqrlphpxq, yqs.

Suppose we have a hypothesis class H and ground truth function class G and lp¨, yq is 1-
Lipschitz, |lpŷ, yq ´ lpy1, yq| ď |ŷ ´ y1|. Let h P H, g P G, we define the distance d between
two functions and l1 norm as,

dph, gq :“ Epx,yqrlphpxq, yqs ´ Epx,yqrlpgpxq, yqs

ď Epx,yqr|hpxq ´ gpxq|s :“ }h ´ g}1.

Their difference is also called the approximation error of function class H on G. We use l1
norm because it is convenient for theoretical analysis; other definitions are possible.

Our goal is to bound the following term:

sup
gPG

inf
hPH

}h ´ g}1

to measure the approximation error of H on G.

4 Neural Networks Approximate Lipschitz Functions

4.1 1-dimension Case

Consider Lipschitz function family (non-parametric function family) g : r0, 1q ÞÑ R,

|gpx1q ´ gpx2q| ď ρ|x1 ´ x2|, @x1, x2 P r0, 1q.

We have the following theorem.

3

Theorem 3. Suppose g : r0, 1q ÞÑ R is ρ-Lipschitz. For any ϵ ą 0, there exists a 2-layer-
neural-network hpxq with 2m neurons where m :“ r

ρ
ϵ
s, s.t. @x P r0, 1q, |hpxq ´ gpxq| ď ϵ.

Proof of Theorem 3. The proof idea is doing partition. The target function is almost con-
stant in each small interval. Construct a function by assigning left hand side value of the
target function in the interval. Let bi “

pi´1q

m
, i “ 1, . . . ,m. Consider

hpxq “

m
ÿ

j“1

gpbjqIrx P rbj, bj`1qs, (2)

we need to replace the indicator function by neurons. Consider step activation function
(threshold function),

σpzq “

#

0, z ă 0

1, z ě 0

we have,

σpz ´ bjq ´ σpz ´ bj`1q “ Irz P rbj, bj`1qs.

Thus hpxq in (2) is a 2-layer-neural-network with 2m neurons. The error is bounded by,

|hpxq ´ gpxq| “ |gpbjq ´ gpxq| ď ρ|bj ´ x| ď ρ ¨
ϵ

ρ
“ ϵ.

We make use of threshold functions that use several 1-dimensional flat regions to approx-
imate arbitrary ρ-Lipschitz unitary functions.

4.2 High-dimension Case

In this section, we consider multivariate approximation, and similarly make use of higher
dimensional bumps or flat regions to approximate continuous multivariate functions. In
particular, we will use 3-layer-neural-network with ReLU activation function to approximate
high-dimension Lipschitz function family.

Theorem 4. Suppose g is a continuous function and ϵ ą 0. Additionally, assume that
@δ ą 0, @x1,x2 P r0, 1sd, if }x1 ´ x2}8 ď δ, we have |gpx1q ´ gpx2q| ď ϵ. Then, there exists
a 3-layer-neural-network hpxq with Ωp 1

ϵd
q ReLU neurons s.t. }hpxq ´ gpxq}1 “

ş

r0,1sd
|hpxq ´

gpxq|dx ď 2ϵ.

We can use similarly ideas in Theorem 3 to construct an intermediate function (piece-wise
constant function).

Lemma 5. Let g, δ, ϵ be defined as in Theorem (4). For any partition P of r0, 1sd into hyper
rectangles, P “ tRiu

N
i“1 with side length ď δ, there exists a piece-wise constant function

hpxq “
řN

i“1 αiIrx P Ris s.t. @x P r0, 1sd, |hpxq ´ gpxq| ď ϵ.

Proof of Lemma 5. Let αi be the value of g on any point in the region Ri.

4

With this lemma, we are equipped to prove Theorem 1. Our strategy will be to apply
Lemma 5 to claim that a piece-wise constant function approximates a continuous function.
Then, we will prove that a 2-layer ReLU network can approximate an indicator function,
representing a bump in high dimensional space. Finally, we show by construction a 3-layer
neural network that uses the first 2 layers to approximate selector functions, and the final
layer to apply corresponding constants αi to the correct indicator approximation.

Proof of Theorem 4. Divide the domain r0, 1sd into sufficiently small hyper rectangles of the
form Ri :“:“

Śd
j“1raij, bijq. If we can approximate Irxj P raij, bijqs by 1 layer of the neural

network with ReLU activation function and approximate Irx P Ris by 2 layers of the neural
network with ReLU activation function then we have three layers of the neural network as

fpxq “
ÿ

i

αĩIrx P Ris,

where Ĩ is approximate by neurons with ReLU activation function. Then we have,

Ex|fpxq ´ gpxq| ď Ex|fpxq ´ hpxq| ` Ex|hpxq ´ gpxq| ď ϵ ` ϵ “ 2ϵ. (3)

Figure 3: Linear combination of ReLU activations

Now, we will construct our two-layer networks to satisfy the above property. First, we are
going to approximate Irx P raij, bijqs by neurons with ReLU activation function. Consider

σpz ´ c1q ´ σpz ´ c2q

c2 ´ c1
, (4)

for c2 ą c1; see left figure in Figure 3. Two equation (4) can form an approximation function
of indicator function,

fi,j,γpxq “
1

γ
rσpxj ´ aijq ´ σpxj ´ paij ´ γqqs ´

1

γ
rσpxj ´ pbij ` γqq ´ σpxj ´ bijqs (5)

:“Ĩrxj P raij, bijqs, (6)

see right figure in Figure 3. Note that the γ can be chosen to be sufficiently small so that
we have as small approximation error of Ĩ on I as desired. fi,j,γpxq can only approximate
one dimension. To approximate d dimension, we can compose these 1-layer single-coordinate
selector functions to form a 2-layer selector function that selects rectangles in all coordinates:

Ĩrx P Ris :“ fi,γpxq “ σp

d
ÿ

j“1

fi,j,γpxq ´ pd ´ 1qq.

5

Then it satisfies:

fi,γpxq “

$

’

&

’

%

1, x P Ri

r0, 1q, o.w.

0, x R
Śd

j“1raij ´ γ, bij ` γs.

Finally, we pick a sufficiently small γ. By equation (3), we conclude that 3-layer-neural-
networks with ReLU activation function can approximate high-dimension Lipschitz function
family with small approximation error.

Remark 6 (Curse of dimension). Note that this theorem requires a number of ReLU units
exponential in the dimensionality. A neural network satisfying this requirement is likely to
be impractical in high-dimensional domains.

6

