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Instructor: Yingyu Liang Date: Scriber: Zhenmei Shi

1 Overview

Last lecture we discussed universal approximation. In this lecture, we will continue to
introduce how to represent the target function as an infinite-width network via Fourier
inversion. The material is based on Chapter 3 of [1] which is in turn based on the seminal
paper of Barron [2].

2 Infinite-width Networks

Definition 1. An infinite-width shallow network is characterized by a signed measure ν
(can be negative) over weight vectors in RP :

x ÞÑ

ż

σpwJxqdνpwq.

We can alternatively write the derivative of the measure as a function of w:

x ÞÑ

ż

σpwJxqgpwqdw, (1)

where dνpwq “ gpwqdw.

In Definition 1, integral operator can be viewed as sum of all neurons, σpwJxq can be
viewed as a neuron and gpwq can be viewed as the weight on the neuron or ai defined in
2-layer-neural network of the previous lecture.

2.1 Review Fourier Transformation

Definition 2. We define Lp as the function class such that f P Lp if r
ş

|fpxq|pdxs1{p ă `8.
If f P L1, f : Rd ÞÑ C, the Fourier transform of f is:

f̂pwq :“

ż

expp´2πiwJxqfpxqdx.

If f P L1, and f̂ P L1 , the Fourier inversion is defined as:

f̃pxq :“

ż

expp2πiwJxqf̂pwqdw.

Since exppizq “ cospzq ` i sinpzq, the real part of f̃ is defined as:

f̄pxq :“Repf̃pxqq “

ż

cosp2πwJxqf̂pwqdw.
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In Definition 2, f P L1 and f̂ P L1 can guarantee f̃pxq “ fpxq almost everywhere. If

furthermore f is continuous, then f̃pxq “ fpxq for any x. If f is a real-valued function with

f P L1 and f̂ P L1, then f̃pxq “ fpxq almost everywhere. In the following we will just say

f̃pxq “ fpxq.

f̃ could be viewed as an infinite-width complex-valued neural network function.

2.2 Rewrite Target Function as Infinite-width Networks

We will rewrite the target function as two infinite-width networks with standard threshold
activations, using the Fourier transforms in the weighting measure. First, we introduce a
useful lemma.

Lemma 3. Suppose g : R ÞÑ R is differentiable. For z P r0, Bs, we have

gpzq ´ gp0q “

ż B

0

Irz ě bsg1
pbqdb.

Proof. By the fundamental theorem of calculus:

gpzq ´ gp0q “

ż z

0

g1
pbqdb

“

ż z

0

1 ¨ g1
pbqdb `

ż B

z

0 ¨ g1
pbqdb

“

ż z

0

Irz ě bsg1
pbqdb `

ż B

z

Irz ě bsg1
pbqdb

“

ż B

0

Irz ě bsg1
pbqdb.

Then we have the following theorem.

Theorem 4. Suppose f P L1, and f̂ P L1 ,
ş

}∇f̂pwq}dw ă 8. We write f̂pwq “

|f̂pwq| expp2πθpwqq, where θpwq is the phase of w in its polar representation. Then for
any }x} ď 1, we have,

fpxq ´ fp0q “ ´ 2π

ż ż }w}

0

IrwJx ´ b ě 0srsinp2πb ` 2πθpwqqs|f̂pwq|dbdw (2)

` 2π

ż ż 0

´}w}

Ir´wJx ` b ě 0srsinp2πb ` 2πθpwqqs|f̂pwq|dbdw. (3)
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Proof. Since exppizq “ cospzq ` i sinpzq, and f is real-valued,

fpxq “

ż

Rerexpp2πiwJxqsf̂pwqdw

“

ż

Rerexpp2πiwJxqs|f̂pwq| expp2πiθpwqqdw

“

ż

Rerexpp2πiwJx ` 2πiθpwqqs|f̂pwq|dw

“

ż

cosp2πwJx ` 2πθpwqq|f̂pwq|dw.

Then, fp0q “
ş

cosp2πθpwq|f̂pwq|dw,

fpxq ´ fp0q “

ż

rcosp2πwJx ` 2πθpwqq ´ cosp2πθpwqs|f̂pwq|dw (4)

“

ż

«

´2π

ż wJx

0

sinp2πb ` 2πθpwqqdb

ff

|f̂pwq|dw, (5)

where the last equation is from fundamental theorem of calculus. Let

gpwJxq “

ż wJx

0

sinp2πb ` 2πθpwqqdb.

Then

g1
pwJxq “ sinp2πb ` 2πθpwqq

gp0q “ 0.

Since we only know }x} ď 1, which is not sufficient to determine the sign of wJx, we need
to divide the integral into two separate cases: wJx ě 0 (case A), and wJx ď 0 (case B).
Also, since wJx ď }w} ¨ }x} ď }w}, by Lemma 3, we have,

gpwJxq “

#

ş}w}

0
IrwJx ě bs sinp2πb ` 2πθpwqqdb, if wJx ě 0,

´
ş0

´}w}
Ir´wJx ě ´bs sinp2πb ` 2πθpwqqdb, if wJx ă 0.

Putting the two parts together,

gpwJxq “

ż }w}

0

IrwJx ě bs sinp2πb ` 2πθpwqqdb

´

ż 0

´}w}

Ir´wJx ě ´bs sinp2πb ` 2πθpwqqdb.

Plug gpwJxq back into (5),

fpxq ´ fp0q “ ´ 2π

ż ż }w}

0

IrwJx ´ b ě 0srsinp2πb ` 2πθpwqqs|f̂pwq|dbdw (6)

` 2π

ż ż 0

´}w}

Ir´wJx ` b ě 0srsinp2πb ` 2πθpwqqs|f̂pwq|dbdw, (7)

which completes the proof.
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2.3 Subsampling from infinite widths NNs

We now switch our focus to the issue of sampling a finite width neural network from our
infinite width representation. We have shown that in many cases we can represent f using an
infinite width neural network, but if we want a finite width network for use in practice, can
we sample one to give a good approximation? In other words, will a finite neural network,
obtained through averaging a bunch of activation functions in the layer before their output,
drawn with probability proportional to the size of the weight measure, approximate the
original function well?

Let us first consider the problem of approximating the mean by sampling in a Hilbert
space. A Hilbert space is a complete vector space endowed with an inner product.

Suppose X “ ErV s, where random vector V is supported on a set S. A natural way

to compute X is to consider X̂ :“ 1
k

řk
i“1 Vi, where tV1, . . . , Vku are drawn i.i.d. from the

distribution of V .
We want to show X̂ « X by showing }X̂ ´ X} is small, where }Z} “ xZ,Zy1{2 is the

norm induced by the inner product on the Hilbert space. A characterization can be seen in
the following lemma:

Lemma 5 (Maurey). Let X “ ErV s, with V supported on set S, and let tV1, . . . , Vku be
drawn i.i.d. from the distribution of V . Then

EV1,...,Vk

›

›

›

›

›

X ´
1

k

k
ÿ

i“1

Vi

›

›

›

›

›

2

ď
E}V }2

k
ď

supUPS }U}2

k
,

and there exists tU1, . . . , Uku in S so that

›

›

›

›

›

X ´
1

k

k
ÿ

i“1

Ui

›

›

›

›

›

2

ď EV1,...,Vk

›

›

›

›

›

X ´
1

k

k
ÿ

i“1

Vi

›

›

›

›

›

2

.

Let us now see if we can extend the results of this lemma to infinite width neural networks.
To do so, we must first define a Hilbert space in which the functions that can be approximated
by neural networks. Let us denote a Hilbert space on such functions as F , with an inner
product defined as follows: @f, g P F , xf, gy “

ş

fpxqgpxqdppxq. We denote the norm induced

by this inner product as } ¨ }L2ppq, and }f}2L2ppq
“ xf, fy, }f}L2ppq “

b

ş

f 2pxqdppxq.

However, an issue with the infinite width neural networks we have constructed so far
is: the measures are not nice enough such that the expectation is calculated easily. As an
example, consider x P r0, 1s and sinp2πxq “

ş1

0
Irx ě bs2πcosp2πxqdb. We see two issues:

1. cosp2πbq is not always postive or negative.

2.
ş1

0
|2π cosp2πxq|db ‰ 1.

So our “distribution” on w (the neural network weight) is not a probability.
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2.4 Modifications to the neural network

We would want these two conditions to be satisfied. To this end, we can modify the neural
network a little bit. Let us introduce the following modifications to a measure µ.

1. Given a signed, non-identically zero measure µ, we decompose µ “ µ` ´ µ´ , where
µ` , µ´ are non-negative measures with disjoint support.

2. For non-negative measures µ` , µ´, define the total mass as }µ`}1 “
ş

|dµ`| , }µ´}1 “
ş

|dµ´|. As the measures are disjoint, it is easy to see that }µ}1 “ }µ`}1`}µ´}1 “
ş

|dµ|.

3. Denote µ̃s :“
µs

}µ}1
, where s P t`1,´1u.

We write the general expression for infinite width neural networks as x ÞÑ
ş

σpwJx ´

bqgpw, bqdpw, bq, we can rewrite it to be:
ż

σpwJx ´ bqgpw, bqdpw, bq “}µ}1

ż

σpwJx ´ bqspw, bq
spw, bqgpw, bqdpw, bq

}µ}1

“}µ}1

ż

σpwJx ´ bqspw, bq
spw, bqdµ

}µ}1

“}µ}1

ż

σpwJx ´ bqspw, bq
dµs

}µ}1

“

ż

}µ}1σpwJx ´ bqspw, bqdµ̃s,

where gpw, bqdpw, bq “ dµ, spw, bq “ signpgpw, bqq.
As we can see from the above formula, we sample w from µ̃s and denote the new output

σ̃pwJx ´ bq “ }µ}1σpwJx ´ bqspw, bq. As a result, our neural network can be written as
an expectation over a new measure µ̃s. We can now state our result on sampling from
infinite width neural networks by Maurey Lemma, by setting V to σ̃pwJx ´ bq, ErV s to
ş

}µ}1σpwJx ´ bqspw, bqdµ̃s and } ¨ } to } ¨ }L2ppq.
For Fourier transformation, we have,

∇f̂pwq “ 2πiwf̂pwq.

Thus, for infinite-width networks in Barron’s Theorem,

}µ}1 “ 2π

ż ż }w}

0

| sinp2πb ` 2πθpwqqf̂pwq|dbdw

ď 2π

ż

}w}|f̂pwq|dw

“

ż

}∇f̂pwq}dw.

Now, consider Fourier representation in Barron’s theorem,

fpxq ´ fp0q “ ´ 2π

ż ż }w}

0

IrwJx ´ b ě 0srsinp2πb ` 2πθpwqqs|f̂pwq|dbdw

` 2π

ż ż 0

´}w}

Ir´wJx ` b ě 0srsinp2πb ` 2πθpwqqs|f̂pwq|dbdw,
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by Maurey’s lemma there exist samples tpwi, bi, siquki“1 such that for any probability measure
P supported on x, where }x} ď 1,

›

›

›

›

›

fpxq ´ fp0q ´
1

k

k
ÿ

i“1

si}µ}1IrwJ
i x ´ b ě 0s

›

›

›

›

›

L2pP q

ď
}µ}21 supw,b }IrwJx ´ b ě 0s}2L2pP q

k

ď

´

ş

}∇f̂pwq}dw
¯2

k
.

Note that this means our sampled neural network approximates the original function with
order Op 1

k
q. Thus, we see that the infinite width neural networks we have constructed are

not just for theoretical understanding. In practice by Maurey’s Lemma, when an infinite
representation exists, there is a sampled finite neural network that approximates the output
function better and better as the size of the sample (or number of neurons) increases.
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