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1 Overview

In this course, we will see an asymptotic result for the Gradient Descent algorithm for exponential
loss. Afterwards, we will see a rate result of Gradient Descent given that the step size is fixed with
finite number of iterations.

2 Setup

Let’s review some basic setups of the logistic regression and gradient descent.
Assume {z;,y;}I, linearly separable, and ||z;||» < 1. Let z; = x;y;, and consider the expo-
nential loss:
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(w) n;exm w'z) (1)
Consider gradient descent with any initialization wy, we do the update as follow:
W41 = Wt — ntVL(wt) ()

where 7, such that 0 < 7, < min{n,, #wt)} such that 0 < 7y < +o0c0. When 7; — 0, then this is
gradient flow in a continuum regime, but can be hard to quantify under a discrete step size.

We want to show the following theorem in the course. This theorem tells us that minimizing
exponential loss is equivalent to maximize the margin.

Theorem 1. Let {x;,y;}" , be any linearly separable dataset. Let [(7,y) = exp(—yy) be the
exponential loss. Suppose ||z;]l2 < 1, the step size is bounded 7; < min{n,., @} where 0 <
1+ < +00, and we use an arbitrary initialization wy, then the iterate w; of gradient decent satisfies,
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The following lemmas can be easily proved by using what the loss function L is.

Lemma 2.
|IVL(w)|2 > vL(w), Yw 3)

Basically, Lemma 2] can be interpreted as if w is a bad solution for L(w), then it has somewhere
to go.

Lemma 3. The following properties of L(w;) and V L(w;) hold:
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(A) 2o VL w3 < oo

(B) w; converges to a global minimum, i.e., L(w;) — 0 and hence Vi, w, z; — oo for any i.
(©) 220 [V L(wy)[| = oo
Lemma 4. If n, < /2/L(w), then L(w;1) < L(wy).
The following claim can also be easily shown by plugging L.
Claim 5.

1 n
w) = - Zexp(—szi)z
i=1
_! Zexp(—szi)zizT
= Z

With the claim and lemmas in hand, we are now ready to show Theorem

“4)

3 The proof of Theorem ]|

First consider the unnormalized margin min; w;tzi. Basically, we will look at the approximation:

1
L(wi1) < L(wy) + (VL(wy), we — wigr) + 3 Sl(lp)(wtﬂ —w,) ' V2L(w) (w1 = wi)  (5)
BE(0,1

where w” is a linear combination between w, and w, . Notice that the above inequality is in fact
equality for some 3 € (0, 1), while we only need the upper bound.

By using ||z|| < 1, we can easily show v V2L(w)v < ||v||>L(w) by expanding left hand side
and using (@).

Notice that by using what w;; is and the fact that v " V2L(w)v < |[v||?L(w), we can see that

1

L(w,) + (VL(wy), wy — wyyq) + 5 551(1p)(wt+1 _ wt)TVQL(wﬁ)(le — wy)
€(0,1
1

< L(we) — ne|[ VL(we)||* + §nt2HVL(wt)H2L(wt) ©

1
= L(w;) — 77t’7/t2 + 5773L(wt)%2
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< - -
< L(wy) exp| L(wy) + 5]

where we denote ||V L(w;)||2 to be v, and we used exp(z) > z — 1 for z € R in the last inequality.
So, by combining (5)) and (6], we have

O<s<t 0<s<t
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On the other hand, we have

n

1 1
L(wir) = " ZGXP(_w;Mi) > EmiaXQXP(_w;ﬂi) ®)
i=1
So, by combining the above two equations, we have
2
77875 ?7575
1%1?” w12 > Z 5 log(nL(wy)) )
0<s <t 0<s<t
2
7]3'75 Ns7s
Z +7H wol| = > —5 - — log(nL(wo)) — lwol| (10)
0<s<t 0<s<t

Now consider the norm of the iterate. By using how gradient descent works, we have

Jweall = llwo = 37 n VL@ < ol + 3 nove (1)

0<s<t 0<s<t

Recall that v, = || VL(ws)| > vL(w;) by Lemma[2] Then we have

20§s<t Ln(i,/z) +7Hw0H > ’YZogsgt NsYs +7Hw0|| _ (12)
[[woll + Zogsgt nsvs — llwoll + Zogsgt Ms7s

Furthermore, by Lemma A), we know that >, _, "5273 < +00; by Lemma B), lwes || —
+00. So

— Docs<t 5 —log(nL(wo)) — yllwoll

0. (13)
1wl
Also, by definition of +,
T .
S Y (14)
| wega ]
Combining (12)(I3)(14), we have
w2 o
[ wega]] '

when t — oo. This completes the proof. This gives us a consistency result for Gradient Descent.

4 A stronger result

The above result only holds when n — oo, what the convergence result is about, and the then
Theorem []is to analyze the rate with some additional assumptions. This will give us a result of
the margin under a finite number of iterations circumstance.

Theorem 6. In the same setting as in Theorem (I} and further set n, = n = L(i;o)' Then

w] T,
Zi __ w 1
min; H = maxy min; o ”2 O(—logt).



Proof. Following the proof in Theorem|I] we arrive at

s 3 S 3
min Wiy % > 2 o<s<t Tray T Vol _ Dozsze o+ log(nL(wo)) + vllwo (15)
1<i<n ||weyq|| — w1 || l|ws ||

nsY2

We also know the first term is lower bounded by ~ and Zogs <t~ 3

show that ||w;||o = Q(log ).
‘We have derived

< 00. So we only need to

1 1 1
L(wes1) < L(wy) — mevf + 577?%2[/(%) < L(w) — 577%2 < L(w) — 57772L(wt)2' (16)
If we simplify the notation by denoting L(wy) to be a; and ¢? = %nyz, then the above result can be
concluded as

a1 < ap — c2al. (17)
Then, by solving this induction,
1
Ai4+1 > 1 (t+1)c2 (18)
ag 1—c2ag

By using the fact that

1 1
0 < ag = 5m’L{wo) = 57° < 5
we have
¢S (19)
— >c
1—c%ay —
Then, by combining (I8)) and (19), we have
1 2
a1 < = . 20
TS D) ()2 0)
Then for Vi, . 5
= —w . z) <L N 21
n eXp( wt—i—lz) —= (wt-i-l) = (t+ 1>77ny ( )
This leads to ( ) )
t+1
wisall = wf, 12 > log ==
n
This shows the claim in the beginning of the proof.
Combining all of the above, and we can conclude the result. O

Remark 7. Theorem [6] only holds when constraining the step size because we only know when
the step size is large enough and then we can know the rate. Theorem [I] holds for the case that
7, 1s bounded above, but it might come to a continuum regime. If 7, is very small, then GD will
converge to a gradient flow case, which is the continuous limit of gradient descent. In this case, it
is impossible to talk about the rate. Theorem [6] considers the discrete case and analyzes the rate of
margins.
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