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1 Overview
In this course, we will see an asymptotic result for the Gradient Descent algorithm for exponential
loss. Afterwards, we will see a rate result of Gradient Descent given that the step size is fixed with
finite number of iterations.

2 Setup
Let’s review some basic setups of the logistic regression and gradient descent.

Assume {xi, yi}ni=1 linearly separable, and ∥xi∥2 ≤ 1. Let zi = xiyi, and consider the expo-
nential loss:

L(w) =
1

n

n∑
i=1

exp(−w⊤zi) (1)

Consider gradient descent with any initialization w0, we do the update as follow:

wt+1 = wt − ηt∇L(wt) (2)

where ηt such that 0 < ηt ≤ min{η+, 1
L(wt)

} such that 0 < η+ < +∞. When ηt → 0, then this is
gradient flow in a continuum regime, but can be hard to quantify under a discrete step size.

We want to show the following theorem in the course. This theorem tells us that minimizing
exponential loss is equivalent to maximize the margin.

Theorem 1. Let {xi, yi}ni=1 be any linearly separable dataset. Let l(ŷ, y) = exp(−ŷy) be the
exponential loss. Suppose ∥xi∥2 ≤ 1, the step size is bounded ηt ≤ min{η+, 1

L(wt)
} where 0 <

η+ < +∞, and we use an arbitrary initialization w0, then the iterate wt of gradient decent satisfies,

lim
t→∞

min
1≤i≤n

w⊤
t zi

∥wt∥2
= max

w
min
1≤i≤n

w⊤zi
∥w∥2

:= γ > 0.

The following lemmas can be easily proved by using what the loss function L is.

Lemma 2.
∥∇L(w)∥2 ≥ γL(w),∀w (3)

Basically, Lemma 2 can be interpreted as if w is a bad solution for L(w), then it has somewhere
to go.

Lemma 3. The following properties of L(wt) and ∇L(wt) hold:
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(A)
∑∞

t=0 ηt∥∇L(wt)∥22 < ∞.

(B) wt converges to a global minimum, i.e., L(wt) → 0 and hence ∀i, w⊤
t zi → ∞ for any i.

(C)
∑∞

t=0 ηt∥∇L(wt)∥ = ∞.

Lemma 4. If ηt ≤
√
2/L(wt), then L(wt+1) ≤ L(wt).

The following claim can also be easily shown by plugging L.

Claim 5.

∇L(w) = − 1

n

n∑
i=1

exp(−w⊤zi)zi

∇2L(w) =
1

n

n∑
i=1

exp(−w⊤zi)ziz
⊤
i

(4)

With the claim and lemmas in hand, we are now ready to show Theorem 1.

3 The proof of Theorem 1
First consider the unnormalized margin mini w

⊤
t+tzi. Basically, we will look at the approximation:

L(wt+1) ≤ L(wt) + ⟨∇L(wt), wt − wt+1⟩+
1

2
sup

β∈(0,1)
(wt+1 − wt)

⊤∇2L(wβ)(wt+1 − wt) (5)

where wβ is a linear combination between wt and wt+1. Notice that the above inequality is in fact
equality for some β ∈ (0, 1), while we only need the upper bound.

By using ∥z∥ ≤ 1, we can easily show v⊤∇2L(w)v ≤ ∥v∥2L(w) by expanding left hand side
and using (4).

Notice that by using what wt+1 is and the fact that v⊤∇2L(w)v ≤ ∥v∥2L(w), we can see that

L(wt) + ⟨∇L(wt), wt − wt+1⟩+
1

2
sup

β∈(0,1)
(wt+1 − wt)

⊤∇2L(wβ)(wt+1 − wt)

≤ L(wt)− ηt∥∇L(wt)∥2 +
1

2
η2t ∥∇L(wt)∥2L(wt)

= L(wt)− ηtγ
2
t +

1

2
η2tL(wt)γ

2
t

≤ L(wt) exp[−
ηtγ

2
t

L(wt)
+

1

2
η2γ2

t ]

(6)

where we denote ∥∇L(wt)∥2 to be γt and we used exp(z) ≥ z− 1 for z ∈ R in the last inequality.
So, by combining (5) and (6), we have

L(wt+1) ≤ L(w0) exp

(
−
∑
0≤s≤t

ηsγ
2
s

L(ws)
+
∑
0≤s≤t

η2sγ
2
s

2

)
(7)
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On the other hand, we have

L(wt+1) =
1

n

n∑
i=1

exp(−w⊤
t+1zi) ≥

1

n
max

i
exp(−w⊤

t+1zi) (8)

So, by combining the above two equations, we have

min
1≤i≤n

w⊤
t+1zi ≥

∑
0≤s≤t

ηsγ
2
s

L(ws)
−
∑
0≤s≤t

ηsγ
2
s

2
− log(nL(w0)) (9)

=
∑
0≤s≤t

ηsγ
2
s

L(ws)
+ γ∥w0∥ −

∑
0≤s≤t

ηsγ
2
s

2
− log(nL(w0))− γ∥w0∥. (10)

Now consider the norm of the iterate. By using how gradient descent works, we have

∥wt+1∥ = ∥w0 −
∑
0≤s≤t

ηs∇L(ws)∥ ≤ ∥w0∥+
∑
0≤s≤t

ηsγs (11)

Recall that γs = ∥∇L(ws)∥ ≥ γL(ws) by Lemma 2. Then we have∑
0≤s≤t

ηsγ2
s

L(ws)
+ γ∥w0∥

∥w0∥+
∑

0≤s≤t ηsγs
≥

γ
∑

0≤s≤t ηsγs + γ∥w0∥
∥w0∥+

∑
0≤s≤t ηsγs

= γ. (12)

Furthermore, by Lemma 3(A), we know that
∑

0≤s≤t
ηsγ2

s

2
< +∞; by Lemma 3(B), ∥wt+1∥ →

+∞. So

−
∑

0≤s≤t
ηsγ2

s

2
− log(nL(w0))− γ∥w0∥
∥wt+1∥

→ 0. (13)

Also, by definition of γ,

w⊤
t+1zi

∥wt+1∥
≤ γ. (14)

Combining (12)(13)(14), we have
w⊤

t+1zi
∥wt+1∥

→ γ.

when t → ∞. This completes the proof. This gives us a consistency result for Gradient Descent.

4 A stronger result
The above result only holds when n → ∞, what the convergence result is about, and the then
Theorem 6 is to analyze the rate with some additional assumptions. This will give us a result of
the margin under a finite number of iterations circumstance.

Theorem 6. In the same setting as in Theorem 1, and further set ηt = η = 1
L(w0)

. Then

mini
w⊤

t zi
∥wt∥ = maxw mini

w⊤zi
∥w∥2 −O( 1

log t
).
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Proof. Following the proof in Theorem 1, we arrive at

min
1≤i≤n

w⊤
t+1zi

∥wt+1∥
≥
∑

0≤s≤t
ηsγ2

s

L(ws)
+ γ∥w0∥

∥wt+1∥
−
∑

0≤s≤t
ηsγ2

s

2
+ log(nL(w0)) + γ∥w0∥
∥wt+1∥

. (15)

We also know the first term is lower bounded by γ and
∑

0≤s≤t
ηsγ2

s

2
< ∞. So we only need to

show that ∥wt∥2 = Ω(log t).
We have derived

L(wt+1) ≤ L(wt)− ηtγ
2
t +

1

2
η2t γ

2
tL(wt) ≤ L(wt)−

1

2
ηγ2

t ≤ L(wt)−
1

2
ηγ2L(wt)

2. (16)

If we simplify the notation by denoting L(wt) to be at and c2 = 1
2
ηγ2, then the above result can be

concluded as
at+1 ≤ at − c2a2t . (17)

Then, by solving this induction,

at+1 ≤
1

1
a0

+ (t+1)c2

1−c2a0

(18)

By using the fact that

0 ≤ c2a0 =
1

2
ηγ2L(w0) =

1

2
γ2 ≤ 1

2

we have
c2

1− c2a0
≥ c2 (19)

Then, by combining (18) and (19), we have

at+1 ≤
1

(t+ 1)c2
=

2

(t+ 1)ηγ2
. (20)

Then for ∀i,
1

n
exp(−w⊤

t+1zi) ≤ L(wt+1) ≤
2

(t+ 1)ηγ2
. (21)

This leads to

∥wt+1∥ ≥ w⊤
t+1zi ≥ log

(t+ 1)ηγ2

2n

This shows the claim in the beginning of the proof.
Combining all of the above, and we can conclude the result.

Remark 7. Theorem 6 only holds when constraining the step size because we only know when
the step size is large enough and then we can know the rate. Theorem 1 holds for the case that
ηt is bounded above, but it might come to a continuum regime. If ηt is very small, then GD will
converge to a gradient flow case, which is the continuous limit of gradient descent. In this case, it
is impossible to talk about the rate. Theorem 6 considers the discrete case and analyzes the rate of
margins.

4


	Overview
	Setup
	The proof of Theorem 1 
	A stronger result

