Lecture 8 Implicit Regularization III

1 Overview

In this course, we will see an asymptotic result for the Gradient Descent algorithm for exponential loss. Afterwards, we will see a rate result of Gradient Descent given that the step size is fixed with finite number of iterations.

2 Setup

Let's review some basic setups of the logistic regression and gradient descent.
Assume $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$ linearly separable, and $\left\|x_{i}\right\|_{2} \leq 1$. Let $z_{i}=x_{i} y_{i}$, and consider the exponential loss:

$$
\begin{equation*}
L(w)=\frac{1}{n} \sum_{i=1}^{n} \exp \left(-w^{\top} z_{i}\right) \tag{1}
\end{equation*}
$$

Consider gradient descent with any initialization w_{0}, we do the update as follow:

$$
\begin{equation*}
w_{t+1}=w_{t}-\eta_{t} \nabla L\left(w_{t}\right) \tag{2}
\end{equation*}
$$

where η_{t} such that $0<\eta_{t} \leq \min \left\{\eta_{+}, \frac{1}{L\left(w_{t}\right)}\right\}$ such that $0<\eta_{+}<+\infty$. When $\eta_{t} \rightarrow 0$, then this is gradient flow in a continuum regime, but can be hard to quantify under a discrete step size.

We want to show the following theorem in the course. This theorem tells us that minimizing exponential loss is equivalent to maximize the margin.

Theorem 1. Let $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$ be any linearly separable dataset. Let $l(\widehat{y}, y)=\exp (-\widehat{y} y)$ be the exponential loss. Suppose $\left\|x_{i}\right\|_{2} \leq 1$, the step size is bounded $\eta_{t} \leq \min \left\{\eta_{+}, \frac{1}{L\left(w_{t}\right)}\right\}$ where $0<$ $\eta_{+}<+\infty$, and we use an arbitrary initialization w_{0}, then the iterate w_{t} of gradient decent satisfies,

$$
\lim _{t \rightarrow \infty} \min _{1 \leq i \leq n} \frac{w_{t}^{\top} z_{i}}{\left\|w_{t}\right\|_{2}}=\max _{w} \min _{1 \leq i \leq n} \frac{w^{\top} z_{i}}{\|w\|_{2}}:=\gamma>0
$$

The following lemmas can be easily proved by using what the loss function L is.

Lemma 2.

$$
\begin{equation*}
\|\nabla L(w)\|_{2} \geq \gamma L(w), \forall w \tag{3}
\end{equation*}
$$

Basically, Lemma 2 can be interpreted as if w is a bad solution for $L(w)$, then it has somewhere to go.

Lemma 3. The following properties of $L\left(w_{t}\right)$ and $\nabla L\left(w_{t}\right)$ hold:
(A) $\sum_{t=0}^{\infty} \eta_{t}\left\|\nabla L\left(w_{t}\right)\right\|_{2}^{2}<\infty$.
(B) w_{t} converges to a global minimum, i.e., $L\left(w_{t}\right) \rightarrow 0$ and hence $\forall i, w_{t}^{\top} z_{i} \rightarrow \infty$ for any i.
(C) $\sum_{t=0}^{\infty} \eta_{t}\left\|\nabla L\left(w_{t}\right)\right\|=\infty$.

Lemma 4. If $\eta_{t} \leq \sqrt{2} / L\left(w_{t}\right)$, then $L\left(w_{t+1}\right) \leq L\left(w_{t}\right)$.
The following claim can also be easily shown by plugging L.

Claim 5.

$$
\begin{align*}
\nabla L(w) & =-\frac{1}{n} \sum_{i=1}^{n} \exp \left(-w^{\top} z_{i}\right) z_{i} \tag{4}\\
\nabla^{2} L(w) & =\frac{1}{n} \sum_{i=1}^{n} \exp \left(-w^{\top} z_{i}\right) z_{i} z_{i}^{\top}
\end{align*}
$$

With the claim and lemmas in hand, we are now ready to show Theorem 1.

3 The proof of Theorem 1

First consider the unnormalized margin $\min _{i} w_{t+t}^{\top} z_{i}$. Basically, we will look at the approximation:

$$
\begin{equation*}
L\left(w_{t+1}\right) \leq L\left(w_{t}\right)+\left\langle\nabla L\left(w_{t}\right), w_{t}-w_{t+1}\right\rangle+\frac{1}{2} \sup _{\beta \in(0,1)}\left(w_{t+1}-w_{t}\right)^{\top} \nabla^{2} L\left(w^{\beta}\right)\left(w_{t+1}-w_{t}\right) \tag{5}
\end{equation*}
$$

where w^{β} is a linear combination between w_{t} and w_{t+1}. Notice that the above inequality is in fact equality for some $\beta \in(0,1)$, while we only need the upper bound.

By using $\|z\| \leq 1$, we can easily show $v^{\top} \nabla^{2} L(w) v \leq\|v\|^{2} L(w)$ by expanding left hand side and using (4).

Notice that by using what w_{t+1} is and the fact that $v^{\top} \nabla^{2} L(w) v \leq\|v\|^{2} L(w)$, we can see that

$$
\begin{align*}
& L\left(w_{t}\right)+\left\langle\nabla L\left(w_{t}\right), w_{t}-w_{t+1}\right\rangle+\frac{1}{2} \sup _{\beta \in(0,1)}\left(w_{t+1}-w_{t}\right)^{\top} \nabla^{2} L\left(w^{\beta}\right)\left(w_{t+1}-w_{t}\right) \\
& \leq L\left(w_{t}\right)-\eta_{t}\left\|\nabla L\left(w_{t}\right)\right\|^{2}+\frac{1}{2} \eta_{t}^{2}\left\|\nabla L\left(w_{t}\right)\right\|^{2} L\left(w_{t}\right) \tag{6}\\
& =L\left(w_{t}\right)-\eta_{t} \gamma_{t}^{2}+\frac{1}{2} \eta_{t}^{2} L\left(w_{t}\right) \gamma_{t}^{2} \\
& \leq L\left(w_{t}\right) \exp \left[-\frac{\eta_{t} \gamma_{t}^{2}}{L\left(w_{t}\right)}+\frac{1}{2} \eta^{2} \gamma_{t}^{2}\right]
\end{align*}
$$

where we denote $\left\|\nabla L\left(w_{t}\right)\right\|_{2}$ to be γ_{t} and we used $\exp (z) \geq z-1$ for $z \in \mathbb{R}$ in the last inequality.
So, by combining (5) and (6), we have

$$
\begin{equation*}
L\left(w_{t+1}\right) \leq L\left(w_{0}\right) \exp \left(-\sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{L\left(w_{s}\right)}+\sum_{0 \leq s \leq t} \frac{\eta_{s}^{2} \gamma_{s}^{2}}{2}\right) \tag{7}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
L\left(w_{t+1}\right)=\frac{1}{n} \sum_{i=1}^{n} \exp \left(-w_{t+1}^{\top} z_{i}\right) \geq \frac{1}{n} \max _{i} \exp \left(-w_{t+1}^{\top} z_{i}\right) \tag{8}
\end{equation*}
$$

So, by combining the above two equations, we have

$$
\begin{align*}
\min _{1 \leq i \leq n} w_{t+1}^{\top} z_{i} & \geq \sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{L\left(w_{s}\right)}-\sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{2}-\log \left(n L\left(w_{0}\right)\right) \tag{9}\\
& =\sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{L\left(w_{s}\right)}+\gamma\left\|w_{0}\right\|-\sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{2}-\log \left(n L\left(w_{0}\right)\right)-\gamma\left\|w_{0}\right\| . \tag{10}
\end{align*}
$$

Now consider the norm of the iterate. By using how gradient descent works, we have

$$
\begin{equation*}
\left\|w_{t+1}\right\|=\left\|w_{0}-\sum_{0 \leq s \leq t} \eta_{s} \nabla L\left(w_{s}\right)\right\| \leq\left\|w_{0}\right\|+\sum_{0 \leq s \leq t} \eta_{s} \gamma_{s} \tag{11}
\end{equation*}
$$

Recall that $\gamma_{s}=\left\|\nabla L\left(w_{s}\right)\right\| \geq \gamma L\left(w_{s}\right)$ by Lemma 2. Then we have

$$
\begin{equation*}
\frac{\sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{L\left(w_{s}\right)}+\gamma\left\|w_{0}\right\|}{\left\|w_{0}\right\|+\sum_{0 \leq s \leq t} \eta_{s} \gamma_{s}} \geq \frac{\gamma \sum_{0 \leq s \leq t} \eta_{s} \gamma_{s}+\gamma\left\|w_{0}\right\|}{\left\|w_{0}\right\|+\sum_{0 \leq s \leq t} \eta_{s} \gamma_{s}}=\gamma \tag{12}
\end{equation*}
$$

Furthermore, by Lemma 3 (A), we know that $\sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{2}<+\infty$; by Lemma 3(B), $\left\|w_{t+1}\right\| \rightarrow$ $+\infty$. So

$$
\begin{equation*}
\frac{-\sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{2}-\log \left(n L\left(w_{0}\right)\right)-\gamma\left\|w_{0}\right\|}{\left\|w_{t+1}\right\|} \rightarrow 0 \tag{13}
\end{equation*}
$$

Also, by definition of γ,

$$
\begin{equation*}
\frac{w_{t+1}^{\top} z_{i}}{\left\|w_{t+1}\right\|} \leq \gamma \tag{14}
\end{equation*}
$$

Combining (12) (13) (14), we have

$$
\frac{w_{t+1}^{\top} z_{i}}{\left\|w_{t+1}\right\|} \rightarrow \gamma
$$

when $t \rightarrow \infty$. This completes the proof. This gives us a consistency result for Gradient Descent.

4 A stronger result

The above result only holds when $n \rightarrow \infty$, what the convergence result is about, and the then Theorem 6 is to analyze the rate with some additional assumptions. This will give us a result of the margin under a finite number of iterations circumstance.

Theorem 6. In the same setting as in Theorem 1, and further set $\eta_{t}=\eta=\frac{1}{L\left(w_{0}\right)}$. Then $\min _{i} \frac{w_{t}^{\top} z_{i}}{\left\|w_{t}\right\|}=\max _{w} \min _{i} \frac{w^{\top} z_{i}}{\|w\|_{2}}-O\left(\frac{1}{\log t}\right)$.

Proof. Following the proof in Theorem1, we arrive at

$$
\begin{equation*}
\min _{1 \leq i \leq n} \frac{w_{t+1}^{\top} z_{i}}{\left\|w_{t+1}\right\|} \geq \frac{\sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{L\left(w_{s}\right)}+\gamma\left\|w_{0}\right\|}{\left\|w_{t+1}\right\|}-\frac{\sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{2}+\log \left(n L\left(w_{0}\right)\right)+\gamma\left\|w_{0}\right\|}{\left\|w_{t+1}\right\|} . \tag{15}
\end{equation*}
$$

We also know the first term is lower bounded by γ and $\sum_{0 \leq s \leq t} \frac{\eta_{s} \gamma_{s}^{2}}{2}<\infty$. So we only need to show that $\left\|w_{t}\right\|_{2}=\Omega(\log t)$.

We have derived

$$
\begin{equation*}
L\left(w_{t+1}\right) \leq L\left(w_{t}\right)-\eta_{t} \gamma_{t}^{2}+\frac{1}{2} \eta_{t}^{2} \gamma_{t}^{2} L\left(w_{t}\right) \leq L\left(w_{t}\right)-\frac{1}{2} \eta \gamma_{t}^{2} \leq L\left(w_{t}\right)-\frac{1}{2} \eta \gamma^{2} L\left(w_{t}\right)^{2} \tag{16}
\end{equation*}
$$

If we simplify the notation by denoting $L\left(w_{t}\right)$ to be a_{t} and $c^{2}=\frac{1}{2} \eta \gamma^{2}$, then the above result can be concluded as

$$
\begin{equation*}
a_{t+1} \leq a_{t}-c^{2} a_{t}^{2} \tag{17}
\end{equation*}
$$

Then, by solving this induction,

$$
\begin{equation*}
a_{t+1} \leq \frac{1}{\frac{1}{a_{0}}+\frac{(t+1) c^{2}}{1-c^{2} a_{0}}} \tag{18}
\end{equation*}
$$

By using the fact that

$$
0 \leq c^{2} a_{0}=\frac{1}{2} \eta \gamma^{2} L\left(w_{0}\right)=\frac{1}{2} \gamma^{2} \leq \frac{1}{2}
$$

we have

$$
\begin{equation*}
\frac{c^{2}}{1-c^{2} a_{0}} \geq c^{2} \tag{19}
\end{equation*}
$$

Then, by combining (18) and (19), we have

$$
\begin{equation*}
a_{t+1} \leq \frac{1}{(t+1) c^{2}}=\frac{2}{(t+1) \eta \gamma^{2}} \tag{20}
\end{equation*}
$$

Then for $\forall i$,

$$
\begin{equation*}
\frac{1}{n} \exp \left(-w_{t+1}^{\top} z_{i}\right) \leq L\left(w_{t+1}\right) \leq \frac{2}{(t+1) \eta \gamma^{2}} \tag{21}
\end{equation*}
$$

This leads to

$$
\left\|w_{t+1}\right\| \geq w_{t+1}^{\top} z_{i} \geq \log \frac{(t+1) \eta \gamma^{2}}{2 n}
$$

This shows the claim in the beginning of the proof.
Combining all of the above, and we can conclude the result.
Remark 7. Theorem 6 only holds when constraining the step size because we only know when the step size is large enough and then we can know the rate. Theorem 1 holds for the case that η_{t} is bounded above, but it might come to a continuum regime. If η_{t} is very small, then GD will converge to a gradient flow case, which is the continuous limit of gradient descent. In this case, it is impossible to talk about the rate. Theorem6considers the discrete case and analyzes the rate of margins.

