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1 Overview

In the previous lectures, we discussed how gradient descent (flow) algorithm induces an
implicit bias, and converges to good optimum. However, our previous discussion requires
the loss function to be differentiable, which is not true in some interesting cases such as
ReLU networks, or the hinge loss. Thus, we will introduce Clarke sub-differential to handle
differentiability. Also, we will introduce positive homogeneity which is an important property
of typical ReLU networks.

2 Clarke Sub-differential

2.1 Sub-differential

Definition 1 (Sub-differential). We define the sub-differential for function f as the following
set:

Bsfpxq :“ tv : @z, fpzq ě fpxq ` vJ
pz ´ xqu

Remark 2. We note that:

1. If f is convex, Bsfpxq ‰ H.

2. If f is convex, differentiable: Bsfpxq “ t∇fpxqu.

2.2 Clarke Sub-differential

Definition 3 (Lipschitz Function). A function f : X Ñ R is L-Lipschitz continuous if D a
constant L, s.t. @x1, x2 P X :

}fpx1q ´ fpx2q} ď L}x1 ´ x2}

.

Definition 4 (Locally Lipschitz Function). A function f : X Ñ R is locally lipschitz if
@x P X , D a neighborhood Upxq s.t. f is Lipschitz continuous on Upxq.

Definition 5 (Clarke Sub-differential). We define the Clarke Sub-differential for a function
f at x P X as the following convex hull:

Bfpxq :“ convts : Dxi Ñ x,∇fpxiq Ñ su

Remark 6. We note the following important properties:
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1. If f is locally Lipschitz, @x, Bfpxq exists.

2. If f is convex, then @x, Bfpxq “ Bsfpxq.

3. If f is continuously differentiable at x ðñ Bfpxq “ t∇fpxqu.

An example of locally lipschitz function is ReLU activation function. At the origin,
limxÑ0` ∇fpxq “ 1, and limxÑ0´ ∇fpxq “ 0. Thus, Bfp0q “ convt0, 1u “ r0, 1s

The importance of introducing Clarke sub-differential is to enable us performing chain
rule for sub-gradient on non-smooth function.

2.3 Differential Inclusion Equation

Differential inclusion equation is an extension of ODE to function not differentiable.
Consider the example of gradient flow. For the differentiable loss function L, we can

define the gradient flow as:
9wptq “ ´∇Lpwq

For L non differentiable, we obtain an corresponding differential inclusion equation:

9wptq P ´BLpwq

Chain Rule Under some technical condition, like 0-minimal definability [2], we have chain
rule: For a.e. t ě 0, and @v P BLpwptqq, we have

d

dt
Lpwptqq “ xv, 9wptqy

Application of Chain Rule: Minimum Norm Path With the chain rule, we can have:

9wptq “ ´ argmin
v

t}v} : v P BLpwptqqu, for a.e. t ě 0

That is, the gradient flow is along the negative minimum norm sub-gradient. To see this,
first note that BLpwptqq is a compact set, so the minimum norm v exists; denote it as:

v˚ :“ argmin
v

t}v} : v P BLpwptqqu.

Assume for contradiction that
} 9wptq} ă }v˚

}.

Apply the chain rule on v “ ´ 9wptq, we have

ˇ

ˇ

ˇ

ˇ

d

dt
Lpwptqq

ˇ

ˇ

ˇ

ˇ

“ |x´ 9wptq, 9wptqy| “ } 9wptq}
2.

Apply the chain rule on v “ v˚, we have
ˇ

ˇ

ˇ

ˇ

d

dt
Lpwptqq

ˇ

ˇ

ˇ

ˇ

“ |xv˚, 9wptqy| ď }v˚
}} 9wptq} ă } 9wptq}

2
“

ˇ

ˇ

ˇ

ˇ

d

dt
Lpwptqq

ˇ

ˇ

ˇ

ˇ

.
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This is a contradiction. So we must have } 9wptq} “ }v˚}.
Now, we will show that the minimum norm path will ensure non-increasing function value

and convergence to local optimum:

Lpwptqq ´ Lpwp0qq “

ż t

0

d

ds
Lpwpsqqds

“ ´

ż t

0

xv, 9wpsqyds

ď ´

ż t

0

mint}v}
2
2 : v P BLpwpsqquds

ď ´t min
sPr0,ts,vPBLpwpsqq

}v}
2

(1)

The first equality follows from the chain rule. The third line follows from the definition of
v, 9w. Re-arranging the last inequality gives:

min
sPr0,ts,vPBLpwpsqq

}v}
2

ď
Lpwp0qq ´ Lpwptqq

t
ď

Lpwp0qq

t
.

This implies for sufficiently large t, there exists some sub-differential with a small norm.

3 Positive Homogeneity

Definition 7 (Homogeneous). A function g is L-homogeneous if

gpαxq “ αLgpxq, @α ě 0

Note that this implies gp0q “ 0 for homogeneous functions g.

Example 8. The ReLU activation function σpxq “ maxp0, xq is 1-homogeneous, since
σpαxq “ maxp0, αxq “ αmaxp0, xq “ ασpxq for α ě 0.

Example 9. A monomial of degree L is L-homogeneous:

mpxq :“
d

ź

i

xPi
i

where
ř

i Pi “ L, since mpαxq “
śd

i pαxiq
Pi ““ α

ř

i Pi
śd

i x
Pi
i “ αLmpxq for α ě 0.

Example 10. A single layer of ReLU network is 1-homogeneous. (Viewing only one layer
of parameter as function input). Recall the definition of L-layer ReLU network:

fpx; θq “ fpx;W1, . . . ,WLq “ WLσpWL´1σp. . . σpW1xqqq

Since ReLU activation is 1-homogeneous,

fpx;W1, . . . , αWi, . . . ,WLq “ WLσpWL´1σp. . . αWiσp. . . σpW1xqqqq

“ αWLσpWL´1σp. . .Wiσp. . . σpW1xqqqq “ αfpx; θq
(2)

Example 11. The entire L-layer ReLU network is L-homogeneous. (Viewing the parameters
of all layers as the function input) Simply applying 1-homogeneous property to the parameter
at each layer gives this property.
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Clarke Sub-differential of L-layer ReLU Network

Definition 12 (Activation Matrix). We define the activation matrix for ith layer of the
ReLU network as the following diagonal matrix:

Ai “ diagpσ1
pWiσp. . . qqq.

Note that σpxq “ xσ1pxq. Thus, we can rewrite the ReLU network as a matrix multipli-
cation:

fpx; θq “ WLAL´1 . . . A1W1x.

And the gradient w.r.t the parameter of a single layer is given as:

d

dWi

fpx; θq “ pWLAL´1 . . . Aiq
J

pAi´1Wi´1 . . . A1W1xq
J

And x
dfpx;θq

dwi
, wiy “ fpx; θq. This equality follows from the cyclic property of trace.

Other Good Resources [3],[1] also provide very good reference.
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