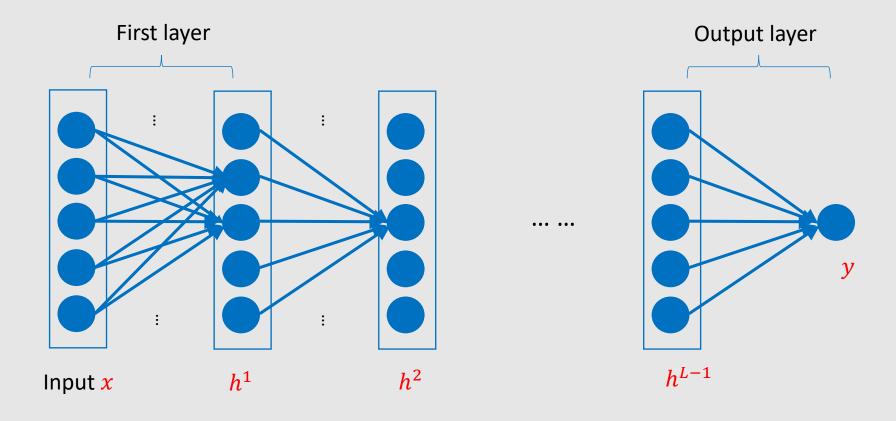
Theoretical Foundations of Deep Learning: Challenges

CS 839@UW-Madison

Yingyu Liang

Key Engine Behind Recent Success

• Deep Neural Networks: y = f(x)



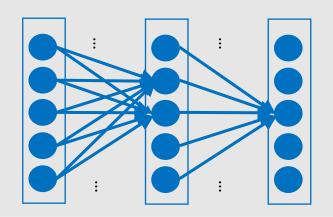
$$h^i = \sigma(W_i h^{i-1})$$
, with ReLU activation $\sigma(z) = \max(0, z)$

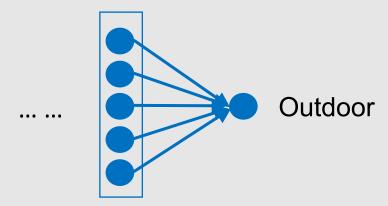
Key Engine Behind Recent Success

- Training Deep Neural Networks: y = f(x; W)
 - Given training data $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$
 - Try to find W such that the network fits the data

Outdoor

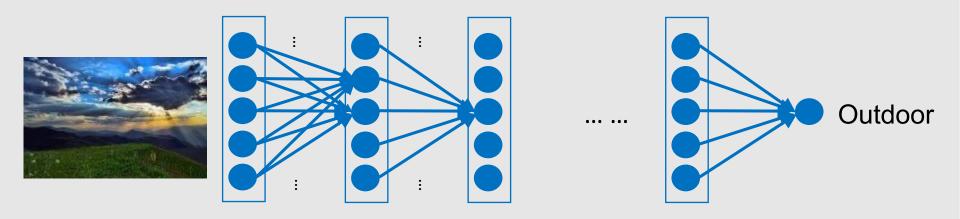
Indoor

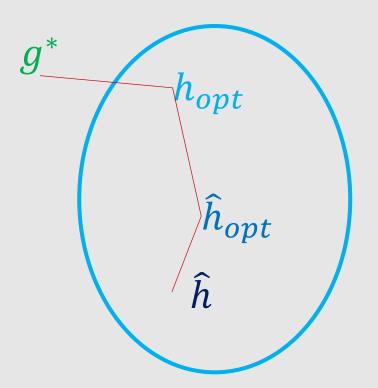




Key Engine Behind Recent Success

- Using Deep Neural Networks: y = f(x; W)
 - Given a new test point x
 - Predict y = f(x; W)

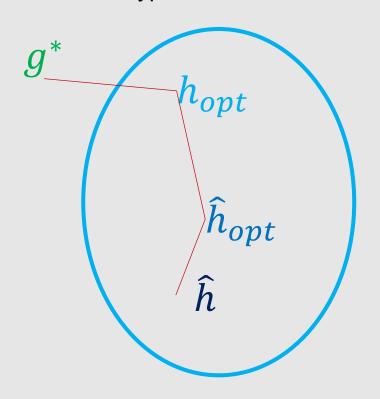




- g*: the ground-truth
- h_{opt}: the optimal hypothesis on the data distribution
- \hat{h}_{opt} : the optimal hypothesis on the training data
- \hat{h} : the trained hypothesis

The tradeoffs of large scale learning. Léon Bottou and Olivier Bousquet. Proceedings of the 20th International Conference on Neural Information Processing Systems, 2007.





$$R(\hat{h}) - R(g^*)$$

$$= R(h_{opt}) - R(g^*)$$

$$+R(\hat{h}_{opt})-R(h_{opt})$$

$$+R(\hat{h}) - R(\hat{h}_{opt})$$

Approximation error

Estimation error

Optimization error

$$R(\hat{h}) - R(g^*)$$

$$= R(h_{opt}) - R(g^*)$$

$$+R(\hat{h}_{opt})-R(h_{opt})$$

$$+R(\hat{h}) - R(\hat{h}_{opt})$$

- Representation power (approximation error)
- Generalization (estimation error)
- Optimization (optimization error)

Fundamental Questions

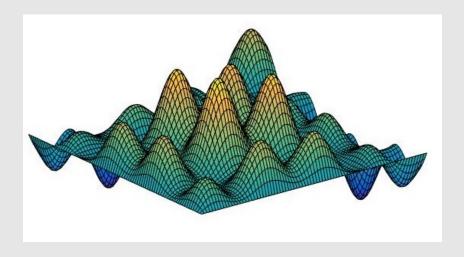
Optimization:

Why can find W with good accuracy on training data?

Generalization:

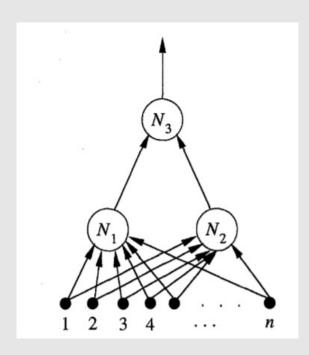
Why the network also accurate on new test instances?

First key challenge: the optimization is non-convex



Empirical Success v.s. Theoretical Hardness

- Theoretically hard
 - Training a 3-Node Neural Network is NP-Complete [Blum & Rivest, 93]

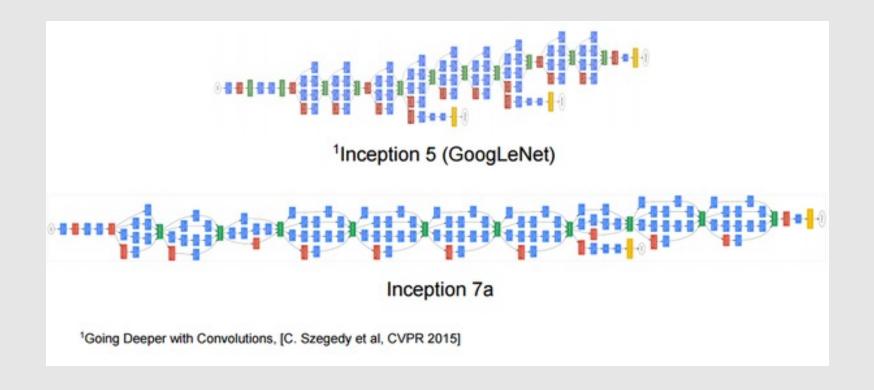


Training a 3-node neural network is NP-complete. Avrim Blum, and Ronald Rivest. Neural Networks 1992.

Empirical Success v.s. Theoretical Hardness

Practically quite feasible

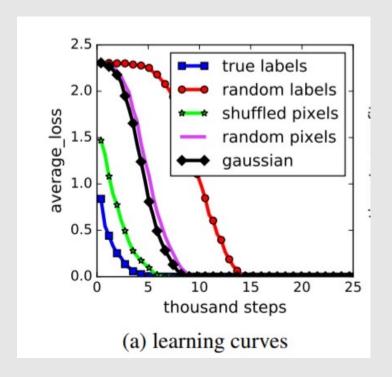
- Simple algorithms like SGD often find good solutions
- Practical networks are often very large and deep: hundreds of layers, thousands of nodes per layer



Key Challenge: Optimization

- Optimization lies in the center of many mysteries
- Empirical success v.s. theoretical hardness
- Overparameterized networks still good, contrast to traditional theory
 - So even if we assume optimization can be done, still cannot explain the good generalization performance
 - Optimization & generalization interweave with each other for NN learning

- Empirical observation: practical DNNs easily fit random labels
- First replace the training labels with random labels
- Then train with net architectures and methods used in practice



Understanding deep learning requires rethinking generalization. Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals. ICLR 2017.

Empirical observation: practical DNNs easily fit random labels

- 1. Practical DNNs are overparameterized
 - Sufficient to fit random labels → sufficient to fit labels with structure

Empirical observation: practical DNNs easily fit random labels

- 1. Practical DNNs are overparameterized
- 2. Even optimization on random labels remains easy
 - Simple methods (variants of SGD) can converge to 0 (global optima)

Empirical observation: practical DNNs easily fit random labels

- 1. Practical DNNs are overparameterized
- 2. Even optimization on random labels remains easy
- 3. Optimization automatically adapts to the structure of the data
 - With random labels, it fits the training labels by memorization (no generalization)
 - With practical labels with structure, it learns the underlying structure without memorization (good generalization)

Empirical observation: practical DNNs easily fit random labels

- 1. Practical DNNs are overparameterized
- 2. Even optimization on random labels remains easy
- 3. Optimization automatically adapts to the structure of the data
- Appear to contradict traditional theory!