
New Paradigm: Pre-trained Representations

• Paradigm shift: supervised learning → pre-training + adaptation
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New Paradigm: Pre-trained Representations

• Paradigm shift: supervised learning → pre-training + adaptation

The history and evolution of pre-trained models

[ZLL+23] Zhou, Li, Li, et al. A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT. 2023.



New Paradigm: Pre-trained Representations

• Paradigm shift: supervised learning → pre-training + adaptation



Label Efficiency

• Great performance with limited labeled data in downstream tasks

• How to quantify the benefit of knowledge transfer? 

• Pre-train ℎ ∈ ℋ, then learn a classifier 𝑓 ∈ ℱ to get final model 𝑓 ∘ ℎ

• Pre-train minimizes an unsupervised loss to ≤ 𝜖𝑝𝑟𝑒

• Without pre-train: ℱ ∘ℋ

[GL20] Garg and Liang. Functional Regularization for Representation Learning: A Unified Theoretical Perspective. NeurIPS’2020.

ℱ ℋ∘
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Universality

• Generally applicable to different tasks
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Figure credit: James John Williams, digt.com



Trade-off of Label Efficiency and Universality 

Contrastive learning ResNet18 backbone via MoCo, then classify on CIFAR10. 

From left to right, incrementally add to pre-training: CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I)

[SCL+23] Shi, Chen, Li, Raghuram, Wu, Liang, Jha. The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning. ICLR’2023.



Trade-off Comes from Feature Weighting
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• Input: linearly generated from features

• Label: linear on shared/private features  

• Pre-trained on Task 1: 
• Recover features for Task 1 but not for others

• Good prediction on Task 1 but not on others

• Pre-trained on mixture of all tasks:
• Recover all shared/private features

• Up-weights the shared features by 𝑂 𝑇

• 𝑂 𝑇 worse on Task 1 but better on average

[SCL+23] Shi, Chen, Li, Raghuram, Wu, Liang, Jha. The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning. ICLR’2023.
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