New Paradigm: Pre-trained Representations

* Paradigm shift: supervised learning = pre-training + adaptation
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The history and evolution of pre-trained models

[ZLL+23] Zhou, Li, Li, et al. A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT. 2023.
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Label Efficiency

~* Great performance with limited labeled data in downstream tasks
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* Pre-train h € #{, then learn a classifier f € F to get final model f o h

* Pre-train minimizes an unsupervised loss to < Epre

* Without pre-train: F o H

[GL20] Garg and Liang. Functional Regularization for Representation Learning: A Unified Theoretical Perspective. NeurlPS’2020.
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Universality

* Generally applicable to different tasks
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Trade-off of Label Efficiency and Universality

Contrastive learning ResNet18 backbone via MoCo, then classify on CIFAR1O0.
From left to right, incrementally add to pre-training: CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I)
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[SCL+23] Shi, Chen, Li, Raghuram, Wu, Liang, Jha. The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning. ICLR’2023.



Trade-off Comes from Feature Weighting

. Shared . Private irrelevant  * Input: linearly generated from features
features

features features

Label: linear on shared/private features

0|00 :
* Pre-trained on Task 1:
* Recover features for Task 1 but not for others
0/0)0 * Good prediction on Task 1 but not on others

Pre-trained on mixture of all tasks:
* Recover all shared/private features

Task T . 0jo0jojojo .  Up-weights the shared features by 0(\/7)
. 0(\/7) worse on Task 1 but better on average

[SCL+23] Shi, Chen, Li, Raghuram, Wu, Liang, Jha. The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning. ICLR’2023.
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