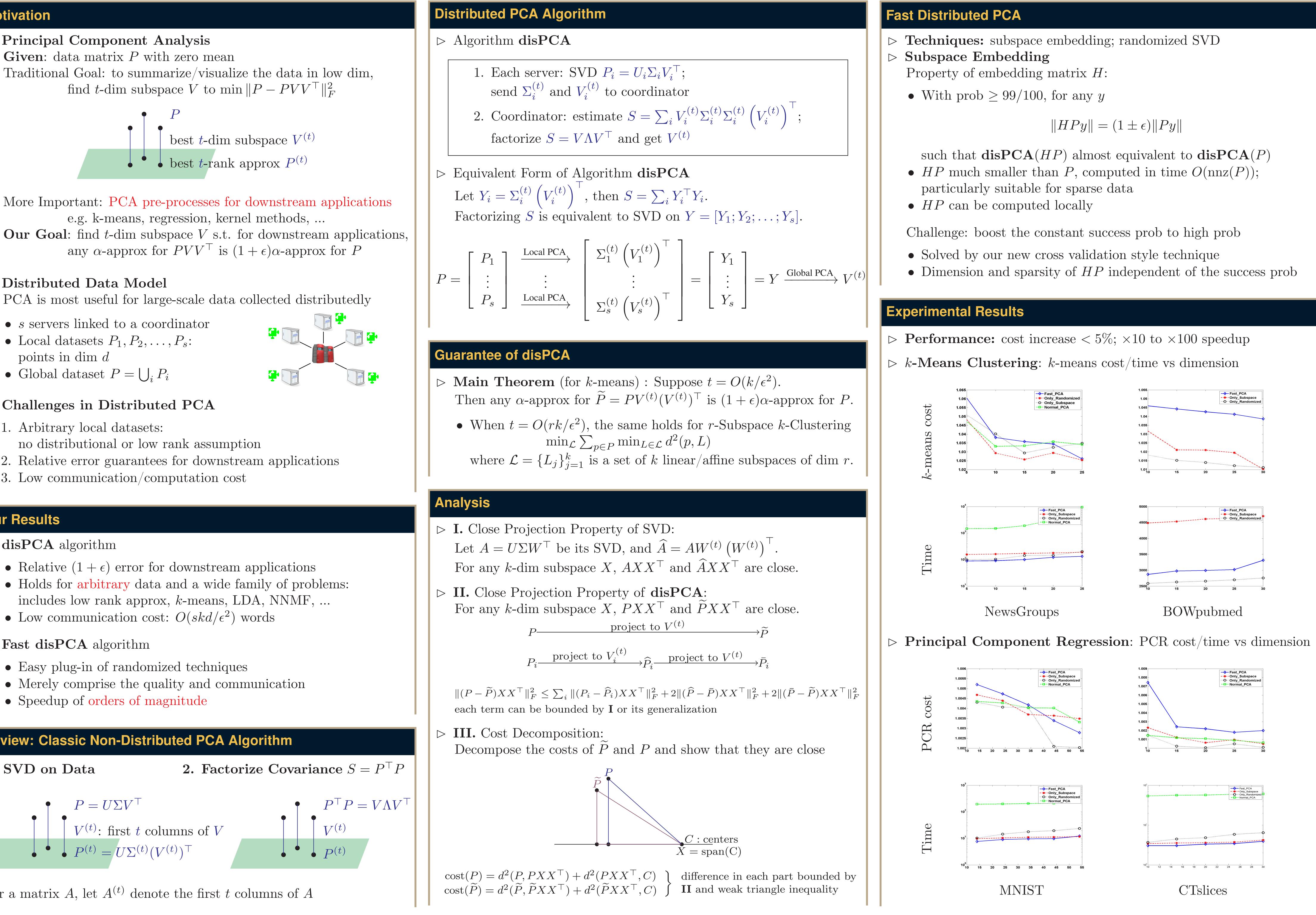


Motivation

Principal Component Analysis **Given**: data matrix P with zero mean Traditional Goal: to summarize/visualize the data in low dim, find t-dim subspace V to min $||P - PVV^{\top}||_F^2$



More Important: PCA pre-processes for downstream applications e.g. k-means, regression, kernel methods, ...

Distributed Data Model PCA is most useful for large-scale data collected distributedly

- *s* servers linked to a coordinator
- Local datasets P_1, P_2, \ldots, P_s : points in dim d
- Global dataset $P = \bigcup_i P_i$

▷ Challenges in Distributed PCA

- 1. Arbitrary local datasets: no distributional or low rank assumption
- 2. Relative error guarantees for downstream applications
- 3. Low communication/computation cost

Our Results

\triangleright disPCA algorithm

- Relative $(1 + \epsilon)$ error for downstream applications
- Holds for arbitrary data and a wide family of problems: includes low rank approx, k-means, LDA, NNMF, ...
- Low communication cost: $O(skd/\epsilon^2)$ words

\triangleright Fast disPCA algorithm

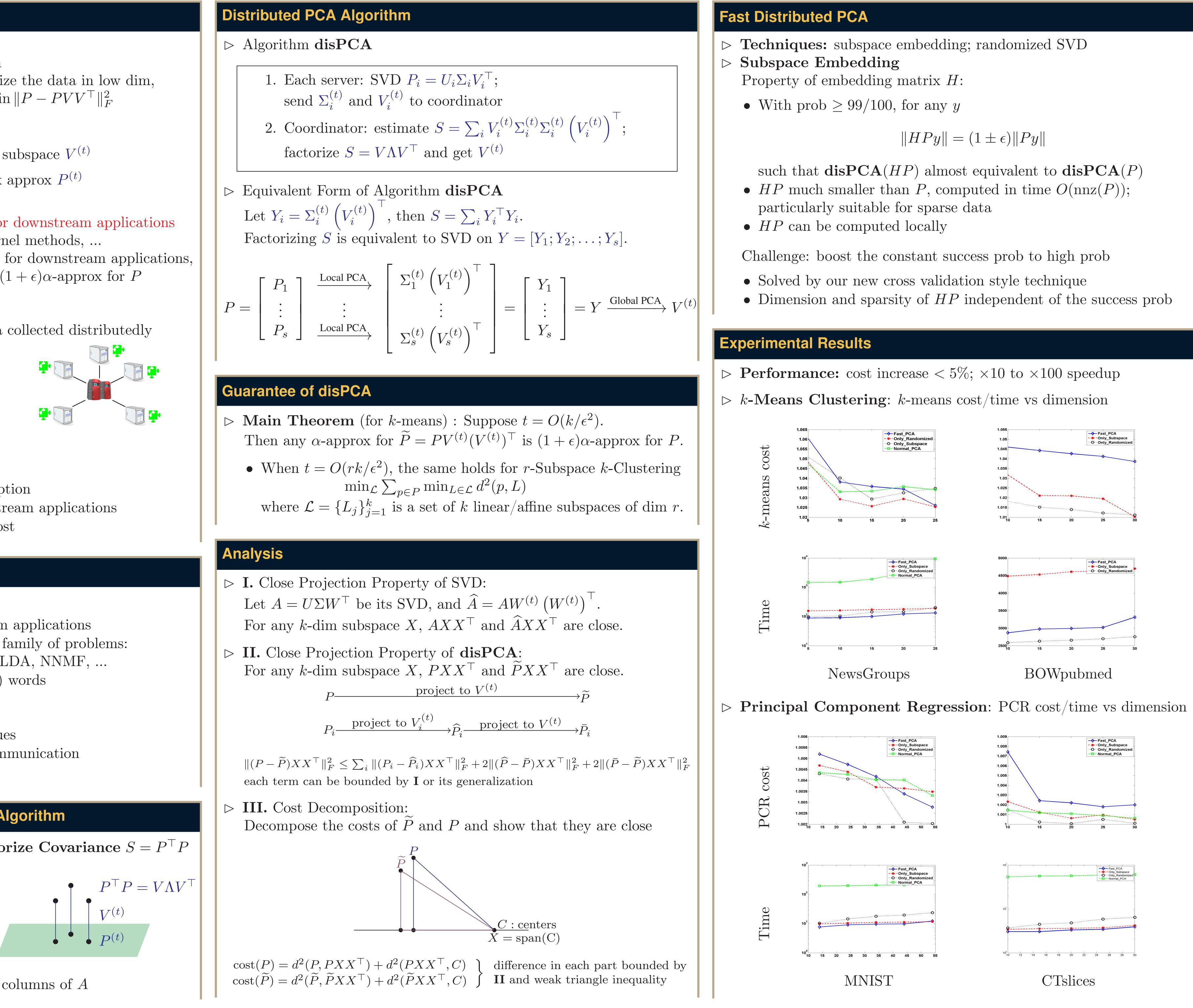
- Easy plug-in of randomized techniques
- Merely comprise the quality and communication
- Speedup of orders of magnitude

Review: Classic Non-Distributed PCA Algorithm

1. SVD on Data

$P = U\Sigma V^{+}$

 $V^{(t)}$: first t columns of V $\bullet \quad \bullet \quad P^{(t)} = U\Sigma^{(t)} (V^{(t)})^\top$



For a matrix A, let $A^{(t)}$ denote the first t columns of A

Improved Distributed Principal Component Analysis

Maria-Florina Balcan[†], Vandana Kanchanapally[‡], Yingyu Liang⁵, and David Woodruff^{*} [†]ninamf@cs.cmu.edu, [‡]vvandana@gatech.edu, [◇]yingyul@cs.princeton.edu, [×]dpwoodru@us.ibm.com

