Improved Distributed Principal Component Analysis

Maria-Florina Balcan ${ }^{\dagger}$, Vandana Kanchanapally ${ }^{\ddagger}$, Yingyu Liang ${ }^{\curvearrowright}$, and David Woodruff ${ }^{\star}$
\dagger ninamf@cs.cmu.edu, ${ }^{\ddagger}$ vvandana@gatech.edu, ${ }^{\circledR}$ yingyul@cs.princeton.edu, *dpwoodru@us.ibm.com

Our Results

\triangleright disPCA algorithm

- Relative $(1+\epsilon)$ error for downstream applications
- Holds for arbitrary data and a wide family of problems:
includes low rank approx, k-means, LDA, NNMF,
- Low communication cost: $O\left(s k d / \epsilon^{2}\right)$ words
\triangleright Fast disPCA algorithm
- Easy plug-in of randomized techniques
- Merely comprise the quality and communication
- Speedup of orders of magnitude

Review: Classic Non-Distributed PCA Algorithm

1. SVD on Data

2. Factorize Covariance $S=P^{\top} P$

For a matrix A, let $A^{(t)}$ denote the first t columns of A

Distributed PCA Algorithm

\triangleright Algorithm disPCA

1. Each server: SVD $P_{i}=U_{i} \Sigma_{i} V_{i}^{\top}$;
send $\Sigma_{i}^{(t)}$ and $V_{i}^{(t)}$ to coordinator
2. Coordinator: estimate $S=\sum_{i} V_{i}^{(t)} \Sigma_{i}^{(t)} \Sigma_{i}^{(t)}\left(V_{i}^{(t)}\right)^{\top}$ factorize $S=V \Lambda V^{\top}$ and get $V^{(t)}$

- Equivalent Form of Algorithm disPCA

$$
\text { Let } Y_{i}=\Sigma_{i}^{(t)}\left(V_{i}^{(t)}\right)^{\top}, \text { then } S=\sum_{i} Y_{i}^{\top} Y_{i}
$$

Factorizing S is equivalent to SVD on $Y=\left[Y_{1} ; Y_{2} ; \ldots ; Y_{s}\right]$.
$P=\left[\begin{array}{c}P_{1} \\ \vdots \\ P_{s}\end{array}\right] \xrightarrow{\text { Local PCA }}\left[\begin{array}{c}\Sigma_{1}^{(t)}\left(V_{1}^{(t)}\right)^{\top} \\ \vdots \\ \Sigma_{s}^{(t)}\left(V_{s}^{(t)}\right)^{\top}\end{array}\right]=\left[\begin{array}{c}Y_{1} \\ \vdots \\ Y_{s}\end{array}\right]=Y \xrightarrow{\text { Local PCA }}\left[\begin{array}{c}\text { Global PCA } \\ (t)\end{array}\right.$

Guarantee of disPCA

\triangleright Main Theorem (for k-means) : Suppose $t=O\left(k / \epsilon^{2}\right)$.
Then any α-approx for $\widetilde{P}=P V^{(t)}\left(V^{(t)}\right)^{\top}$ is $(1+\epsilon) \alpha$-approx for P.

- When $t=O\left(r k / \epsilon^{2}\right)$, the same holds for r-Subspace k-Clustering $\min _{\mathcal{L}} \sum_{p \in P} \min _{L \in \mathcal{L}} d^{2}(p, L)$
where $\mathcal{L}=\left\{L_{j}\right\}_{j=1}^{k}$ is a set of k linear/affine subspaces of $\operatorname{dim} r$.

Analysis

\triangleright I. Close Projection Property of SVD:
Let $A=U \Sigma W^{\top}$ be its SVD, and $\widehat{A}=A W^{(t)}\left(W^{(t)}\right)^{\top}$
For any k-dim subspace $X, A X X^{\top}$ and $\widehat{A} X X^{\top}$ are close.
II. Close Projection Property of disPCA:

For any k-dim subspace $X, P X X^{\top}$ and $\widetilde{P} X X^{\top}$ are close.

$$
\begin{aligned}
& P \xrightarrow{\text { project to } V^{(t)}} \widetilde{\longrightarrow} \\
& P_{i} \xrightarrow{\text { project to } V_{i}^{(t)}} \widehat{P}_{i} \xrightarrow{\text { project to } V^{(t)}} \bar{P}_{i}
\end{aligned}
$$

$\left\|(P-\widetilde{P}) X X^{\top}\right\|_{F}^{2} \leq \sum_{i}\left\|\left(P_{i}-\widehat{P}_{i}\right) X X^{\top}\right\|_{F}^{2}+2\left\|(\widehat{P}-\bar{P}) X X^{\top}\right\|_{F}^{2}+2\left\|(\bar{P}-\widetilde{P}) X X^{\top}\right\|_{F}^{2}$ each term can be bounded by \mathbf{I} or its generalization
III. Cost Decomposition:

Decompose the costs of \widetilde{P} and P and show that they are close

$\left.\operatorname{cost}(P)=d^{2}\left(\underset{\sim}{P}, \underset{\sim}{P} X X^{\top}\right)+d^{2}\left(P_{\sim} X X^{\top}, C\right)\right\}$ difference in each part bounded by $\left.\operatorname{cost}(\widetilde{P})=d^{2}\left(\widetilde{P}, \widetilde{P} X X^{\top}\right)+d^{2}\left(\widetilde{P} X X^{\top}, C\right)\right\} \quad$ II and weak triangle inequality

Fast Distributed PCA

\triangleright Techniques: subspace embedding; randomized SVD
\checkmark Subspace Embedding
Property of embedding matrix H :

- With prob $\geq 99 / 100$, for any y

$$
\|H P y\|=(1 \pm \epsilon)\|P y\|
$$

such that disPCA $(H P)$ almost equivalent to $\operatorname{disPCA}(P)$

- $H P$ much smaller than P, computed in time $O(\mathrm{nnz}(P))$;
particularly suitable for sparse data
- HP can be computed locally

Challenge: boost the constant success prob to high prob

- Solved by our new cross validation style technique
- Dimension and sparsity of $H P$ independent of the success prob

Experimental Results

\triangleright Performance: cost increase $<5 \% ; \times 10$ to $\times 100$ speedup
$\triangleright k$-Means Clustering: k-means cost/time vs dimension

NewsGroups

Principal Component Regression: PCR cost/time vs dimension

MNIST

CTslices

