Scalable Kernel Methods via Doubly Stochastic Gradients

$$\begin{array}{l} \textbf{Motivation} \\ \textbf{Goal: scale kernel methods up with provable guarantee.} \\ \textbf{Generality and simplicity. Applicable to many kernel methods.} \\ \textbf{Efficient computation and low memory requirement.} \\ \textbf{Fificient computation and low memory requirement.} \\ \textbf{Fificient computational Cost: } O(\frac{1}{2}dt^2) O(dt) \\ \textbf{Memory Cost: } O(1) O(t) O(t) \\ \textbf{Memory Cost: } O(1) O(t) \\ \textbf{Memory Cost: } O(t) \\ \textbf{Memory Cost: } O(t) \\ \textbf{Memory Cost: } O(t) O(t) \\ \textbf{Memory Cost: } O$$

Bo Dai¹, Bo Xie¹, Niao He¹, Yingyu Liang², Anant Raj, Maria-Florina Balcan³, Le Song¹ Georgia Institute of Technology¹, Princeton University², Carnegie Mellon University³

Predict: $f(x) = \text{Predict}(x, \{\alpha_i\}_{i=1}^t)$ Input: $\mathbb{P}(\omega), \phi_{\omega}(x).$ 1: Set f(x) = 0. 2: for i = 1, ..., t do 3: Sample $\omega_i \sim \mathbb{P}(\omega)$ with seed *i*. 4: $f(\mathbf{x}) = f(\mathbf{x}) + \alpha_i \phi_{\omega_i}(\mathbf{x})$.

 $\mathbb{E}_{\mathcal{D}^t, \boldsymbol{\omega}^t}\left[|f_{t+1}(x) - f_*(x)|^2\right] \leqslant \frac{c_1}{t},$

The error can be decomposed as two terms

 $|f_{t+1}(x) - f_*(x)|^2$ $\leq 2 |f_{t+1}(x) - h_{t+1}(x)|^2$ e_1 = error due to random functions $+2\kappa$ $||h_{t+1} - t_{s}|$ e_2 =error due to random data

Computation, Memory and Statistics Trade-off

We fix $||f - f_*||_2^2 \leq \epsilon$, and assume that the number of samples, $n = O(1/\epsilon)$. The number of random features/ranks r will be $O(n) = O(1/\epsilon)$.

Experiments on Real Datasets

Georgialnstitute Of Iechnology