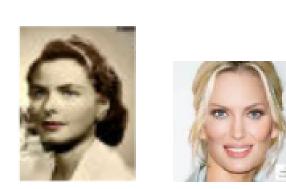
Efficient Semi-supervised and Active Learning of Disjunctions

Maria-Florina Balcan, Christopher Berlind, Steven Ehrlich, and Yingyu Liang

Taking Advantage of Unlabeled Data

Classic paradigm: passive supervised learning ► Given labeled examples



faces

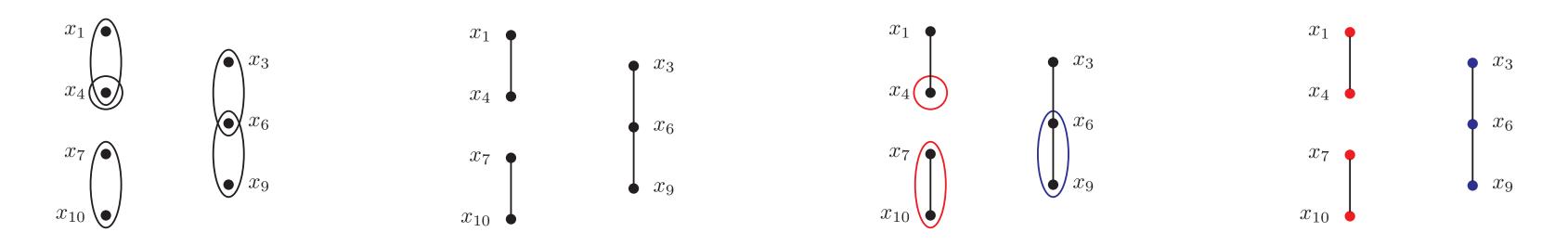
► Find function that correctly labels examples

Classic paradigm insufficient nowadays

A Simple Case: No Non-indicators

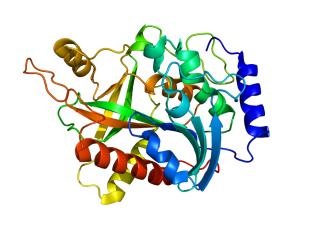
Algorithm:

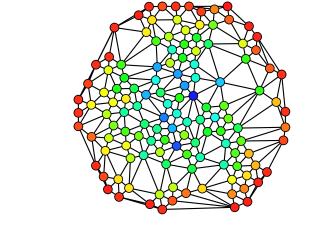
1. Build the commonality graph by connecting variables that appear in examples together 2. Query one example from each connected component



Active Learning Algorithm

- ► Massive amounts of unlabeled data
- Only small fraction can be labeled





protein sequences

astronomical data

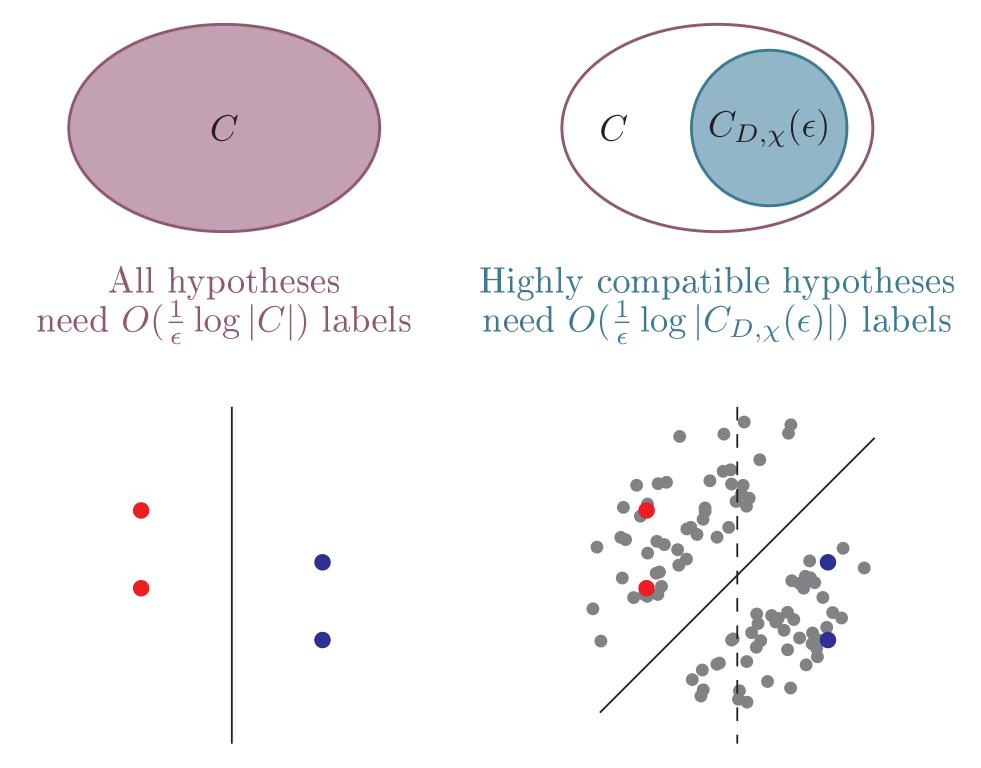
social networks

Semi-supervised learning: Directly given both labeled examples and unlabeled examples.

Active learning: Given unlabeled examples and ability to query the label of any unlabeled example.

Semi-supervised PAC Model [Balcan & Blum, 2010]

• Compatibility function χ relates hypotheses to unlabeled data



Key idea: Find and remove all k non-indicators and reduce to the previous case.

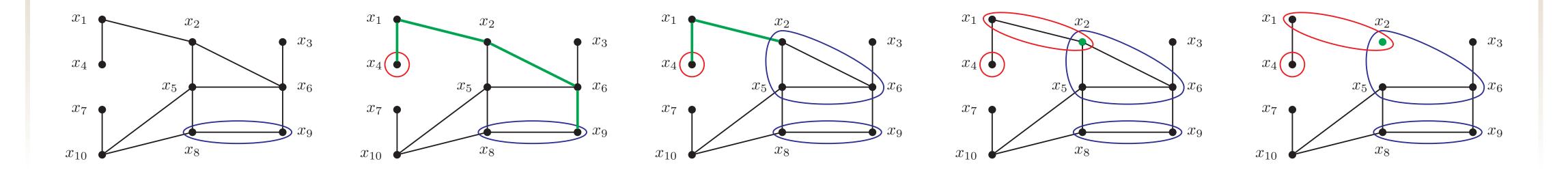
Algorithm:

- 1. Build the commonality graph
- 2. Query an example in each component
- 3. Test the hypothesis on a small sample
- 4. If not consistent, find non-indicator via binary search

Analysis:

- One query for each of $\log |C_{D,\chi}(\epsilon)|$ components
- ► One test/search for each of *k* non-indicators
 - $\blacktriangleright \frac{1}{\epsilon} \log \frac{k}{\delta}$ queries per test
 - $\blacktriangleright \log n$ queries per binary search

Queries:
$$O\left(\log |C_{D,\chi}(\epsilon)| + k\left(\log n + \frac{1}{\epsilon}\log \frac{k}{\delta}\right)\right)$$



Semi-supervised Learning Algorithms

Key idea: With enough labeled data, every non-indicator appears in some labeled example.

Parameter: ϵ_0 = minimum non-indicator probability

Labeled and unlabeled Labeled data only

► Fewer labels in principle than passive supervised ► Lack efficient algorithms to realize this potential

Two-sided Disjunctions [Blum & Balcan, 2007]

• Examples described by n boolean features ▶ positive, negative, and non-indicators • Examples labeled by contained indicators ► Compatibility:

Algorithm 1:

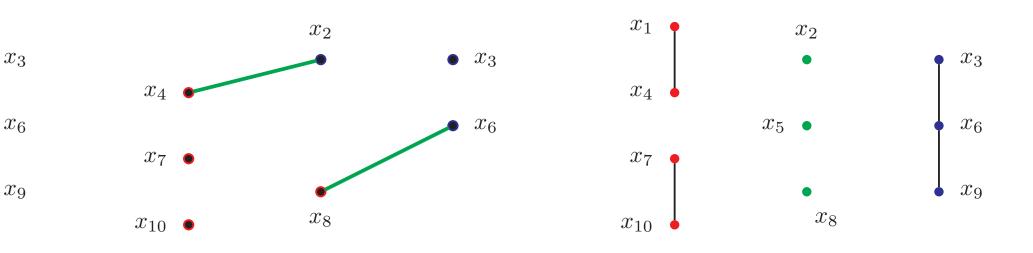
- 1. Build the commonality graph
- 2. Assign variables to potential indicator sets
- 3. Build indicator graph from paths between opposite potential indicators
- 4. Find vertex cover (non-indicators) corresponding to a consistent and compatible hypothesis

 $x_4 \bullet$

Analysis:

- Need $\frac{1}{\epsilon_0} \log k$ labels to satisfy key idea above
- ► Target non-indicators form VC in indicator graph
- ▶ Need $\frac{1}{\epsilon} \log |C_{D,\chi}(\epsilon)|$ labels for generalization
- Computationally efficient when $k = O(\log n)$
- ► Finds consistent and compatible disjunction

Labels:
$$\tilde{O}\left(\max\left\{\frac{1}{\epsilon_0}\log k, \frac{1}{\epsilon}\log|C_{D,\chi}(\epsilon)|\right\}\right)$$



Algorithm 2:

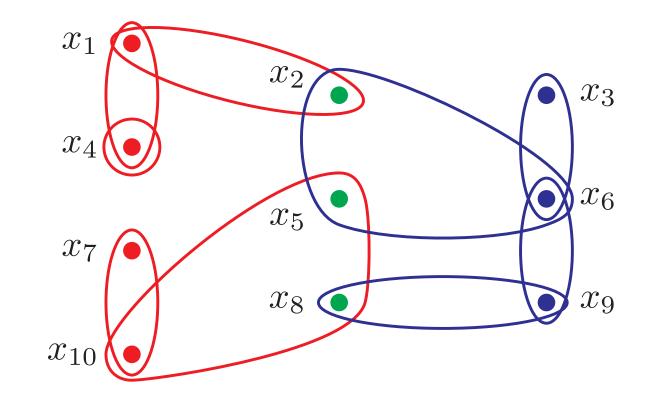
 x_4

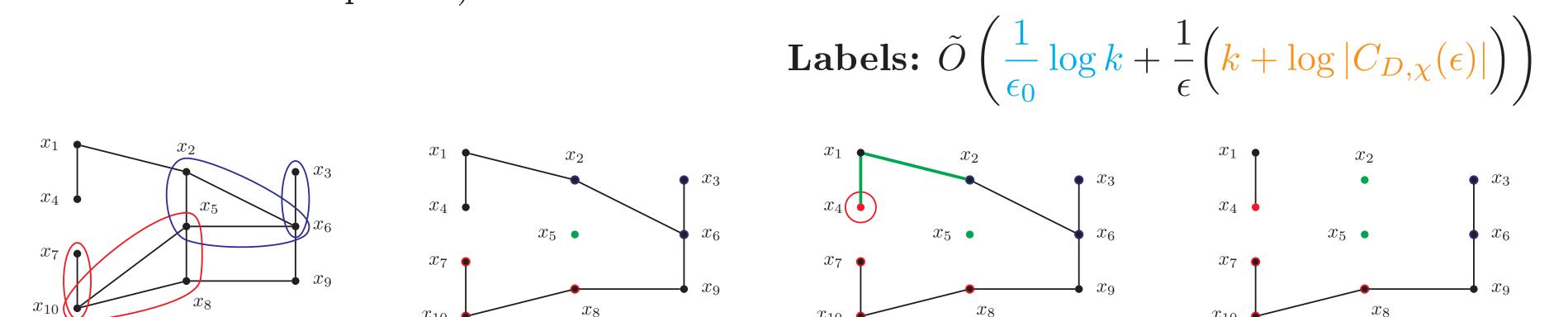
- 1. Build the commonality graph
- 2. Assign variables to potential indicator sets
- 3. Test the nearest neighbor hypothesis
- 4. On each mistake, remove a non-indicator (or label a connected component)

Analysis:

- Need $\frac{1}{\epsilon_0} \log k$ labels to satisfy key idea above
- ► Mistakes reveal paths ending at a non-indicator
- At most $k + \log |C_{D,\chi}(\epsilon)|$ mistakes
- Computationally efficient
- ► Improper learner

- Every example has an indicator
- ► No example has conflicting indicators





Discussion

The power of active learning

- ► SSL poses computational challenges
- ► AL algo is efficient, proper, and less restrictive

Learning halfspaces with margins

- Problem has $L_{\infty}L_1$ margin $\frac{|w^* \cdot x|}{\|w^*\|_{\infty} \|x\|_1} \ge \frac{1}{k+1}$
- ► Margin differs from Perceptron and Winnow
- ► Main open question: are there efficient algorithms for the general problem?