Efficient Semi-supervised and Active Learning of Disjunctions

Maria-Florina Balcan, Christopher Berlind, Steven Ehrlich, and Yingyu Liang

Georgia Institute of Technology

ICML, Jun 19th, 2013

Modern Challenge for Learning Paradigm

Passive Supervised Learning

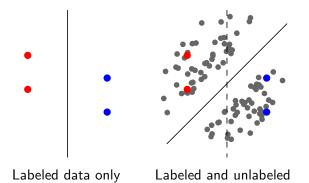
 Given labeled examples, find function that correctly labels future examples

face

car

Classic paradigm insufficient nowadays

- Massive amounts of unlabeled data
- Only small fraction can be labeled



protein sequences

astronomical data

social networks

Common assumption: large margin

 \boldsymbol{n} boolean features: positive, negative, and non-indicators

 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10}

n boolean features: positive, negative, and non-indicators

Training examples labeled according to contained indicators

- Every example has an indicator
- No example has conflicting indicators

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	label
1	1	0	0	0	0	0	0	0	0	+
0	0	1	1	0	0	0	0	1	0	+
									1	
0	0	0	0	1	1	1	0	0	1	_

Imagine to distinguish two languages we don't speak...

Words are features, documents are examples

Features set to $1 \mbox{ in an example are indicators of the same type}$

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	label	_	
1	1	1	0	0	0	0	0	?	_	
0	1	0	1	0	0	0	0	?	<i>x</i> ₂	x_6
0	0	1	1	0	0	0	0	?		
0	0	0	0	0	0	1	1	?		
0	0	0	0	1	1	1	0	?		r_{x_5}
0	0	0	0	0	1	1	1	?		
0	0	0	0	1	0	0	1	?		

Our results for this open problem:

- efficient active algorithm
- efficient semi-supervised algorithms

Connection to margin assumptions:

- $L_{\infty}L_1$ margin $\geq O(\frac{1}{\# \text{non-indicators}})$
- Different from L_2L_2 (Perceptron) or L_1L_∞ (Winnow) margin