Review for Nonlinear Programming

Zhiting Xu
November 30, 2008

1 Line Search Methods

In line search method, each iteration computes a search direction p_{k} and then decides how far to move along that direction. That is,

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} p_{k} \tag{1.1}
\end{equation*}
$$

The search direction p_{k} often has the form

$$
\begin{equation*}
p_{k}=-B_{k}^{-1} f_{k} \tag{1.2}
\end{equation*}
$$

where B_{k} is a symmetric and nonsingular matrix.

1.1 Step Length

Define $\phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right), \alpha>0$. The ideal choice of α would be global minimizer of ϕ. However, it is usually too expensive to identify this value. Line search methods try to find a reasonable value α that meets some conditions by try out a sequence of candidate α. A popular condition is Wolfe Conditions, which has two inequality:

$$
\begin{array}{r}
f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k} \\
\nabla f\left(x_{k}+\alpha_{k} p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T} p_{k} \tag{1.4}
\end{array}
$$

where $0<c_{1}<c_{2}<1$.
The right-hand-side of 1.3 is a linear function with negative slop, so the first Wolfe Condition is that the function value of the new point should be sufficient small.

To avoid a too short step, the Wolfe Condition also requires a smooth slope, which is the second Wolfe Condition.

The Strong Wolfe conditions requires that the derivative $\phi^{\prime}\left(\alpha_{k}\right)$ can't be too positive:

$$
\begin{align*}
f\left(x_{k}+\alpha_{k} p_{k}\right) & \leq f\left(x_{k}\right)+c_{1} \alpha_{k} \nabla f_{k}^{T} p_{k} \tag{1.5a}\\
\left|\nabla f\left(x_{k}+\alpha_{k} f_{k}\right)^{T} p_{k}\right| & \leq c_{2}\left|\nabla f_{k}^{T} p_{k}\right| \tag{1.5b}
\end{align*}
$$

1.2 Convergence of Line Search

To see the convergence of line search, discuss the angle θ_{k} between p_{k} and the steepest descent direction, define by

$$
\begin{equation*}
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f _ { k } \left|\left\|\mid p_{k}\right\|\right.\right.} \tag{1.6}
\end{equation*}
$$

Theorem 1.1 Consider any iteration of the form 1.1, where p_{k} is a descent direction and α_{k} satisfies the Wolfe conditions 1.3, 1.4. Suppose that f is bounded below in \mathbb{R}^{n} and that f is continuously differentiable in an open set \mathcal{N} containing the level set $\mathcal{L} \stackrel{\text { def }}{=}\left\{x: f(x) \leq f\left(x_{0}\right)\right\}$, where x_{0} is the starting point of the iteration. Assume also that the gradient ∇f is Lipschitz continuous on \mathcal{N}, that is, there exists a constant $L>0$ such that

$$
\begin{equation*}
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \text { for all } x, \tilde{x} \in \mathcal{N} \tag{1.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty \tag{1.8}
\end{equation*}
$$

If the angle between p_{k} and $-\nabla f_{k}$ is bounded away from 90°, that is, $\cos \theta_{k} \geq \delta>0$, for all k, then $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$. If Newton and quasiNewton methods require B_{k} bounded, that is, $\left\|B_{k}\right\|\left\|B_{k}^{-1}\right\| \leq M$, then $\cos \theta_{k} \geq 1 / M$. Therefore, these methods are globally convergent.

For conjugate gradient methods, we can only get weaker result: $\lim \inf _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.

1.3 Rate of Convergence

Basic concepts:

$$
\begin{align*}
\text { Q-linear: } & \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|} \leq r \text {, for all } \mathrm{k} \text { sufficiently large } \tag{1.9}\\
\text { Q-superlinear: } & \lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|}=0 \tag{1.10}\\
\text { Q-quadratic: } & \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|^{2}} \leq M \tag{1.11}
\end{align*}
$$

R -linear: if there is a sequence of nonnegative scalars $\left\{v_{k}\right\}$ such that $\| x_{k}-$ $x^{*} \| \leq v_{k}$ for all k, and $\left\{x_{k}\right\}$ converges Q-linearly to zero. The sequence $\left\|x_{k}-x^{*}\right\|$ is said to be dominated by $\left\{v_{k}\right\}$.

Steepest Descent

Theorem 1.2 When the steepest descent method with exact line searches $x_{k+1}=x_{k}-\frac{\nabla f_{k}^{T} \nabla f_{k}}{\nabla f_{k}^{T} Q \nabla f_{k}} \nabla f_{k}$ is applied to the strongly convex quadratic function $f(x)=\frac{1}{2} x^{T} Q x-b^{T} x$, the error norm $\frac{1}{2}\left\|x-x^{*}\right\|_{Q}^{2}=f(x)-f(x)^{*}$ satisfies

$$
\begin{equation*}
\left\|x_{k+1}-x^{*}\right\|_{Q}^{2} \leq \frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\left\|x_{k}-x^{*}\right\|_{Q}^{2} \tag{1.12}
\end{equation*}
$$

where $0<\lambda_{1} \leq \lambda_{1} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of Q.

Newton's Method

In Newton iteration, the search p_{k} is given by:

$$
\begin{equation*}
p_{k}^{N}=-\nabla^{2} f_{k}^{-1} \nabla f_{k} \tag{1.13}
\end{equation*}
$$

p_{k} may not be the descent direction as $\nabla^{2} f_{k}$ may not be positive definite.
Theorem 1.3 Suppose that f is twice differentiable and that the Hessian $\nabla^{2} f(x)$ is Lipschitz continuous in a neighborhood of a solution x^{*} at which the sufficient conditions are satisfied. Consider the iteration $x_{k+1}=x_{k}+p_{k}$, where p_{k} is given by 1.13. Then

- 1- if the starting point x_{0} is sufficiently close to $x *$, the sequence of iterates converges to x^{*}
- 2- the rate of convergence of $\left\{x_{k}\right\}$ is quadratic; and
- 3- the sequence of gradient norms $\left\{\left\|\nabla f_{k}\right\|\right\}$ converges quadratically to zero.

Quasi-Newton Methods
In Quasi-Newton method, p_{k} is:

$$
\begin{equation*}
p_{k}=-B_{k}^{-1} \nabla f_{k} \tag{1.14}
\end{equation*}
$$

where B_{k} is symmetric and positive definite.
Theorem 1.4 Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable. Consider the iteration $x_{k+1}=x_{k}+a_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies the Wolfe conditions 1.3, 1.4 with $c_{1} \leq 1 / 2$. If the sequence $\left\{x_{k}\right\}$ converges to a point x^{*} such that $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite, and if the search direction satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{1.15}
\end{equation*}
$$

then

- 1- the step length α_{k} is admissible for all k greater than a certain index k_{0} : and
- 2- if $\alpha_{k}=1$ for all $k>k_{0},\left\{x_{k}\right\}$ converges to x^{*} superlinearly.

If p_{k} is a quasi-Newton search direction of the from 1.14 , then 1.15 is equivalent to

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\left(B_{k}-\nabla^{2} f\left(x^{*}\right)\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{1.16}
\end{equation*}
$$

This is both necessary and sufficient for the superlinear convergence of quasi-Newton methods.

Theorem 1.5 Suppose that $f: \mathbb{R}^{n} \rightarrow R$ is twice continuously differentiable. Consider the iteration $x_{k+1}=x_{k}+p_{k}$ (that is, the step length α_{k} is uniformly 1) and that p_{k} is given by 1.14. Let us assume also that $\left\{x_{k}\right\}$ converges to a point x^{*} such that $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite. Then $\left\{x_{k}\right\}$ converges superlinearly if and only if 1.16 holds.

1.4 Step-Length Selection Algorithms

Line search uses an initial estimate α_{0} and generates a sequence $\left\{\alpha_{i}\right\}$ that either terminates at a step that meets some conditions (like Wolfe condition), or determines that such a step length does not exist. Basically, the precedure consists of two phases: a bracketing phase that finds an interval $[a, b]$ that contains acceptable step lengths, and then a selection phase taht zooms in to locate the final step length. The selection phase usually reduces the bracketing interval and interpolates some of the function and derivative information gathered on earlier steps to guess the location of the minimizer.

Interpolation

At a guess α_{i}, if we have

$$
\begin{equation*}
\phi\left(\alpha_{i}\right) \leq \phi(0)+c_{1} \alpha_{i} \phi^{\prime}(0) \tag{1.17}
\end{equation*}
$$

Then this step length satisfies the condition. Otherwise, we know that $\left[0, \alpha_{i}\right]$ contains acceptable step lengths. Perform a quadratic approximation $\phi_{q}(\alpha)$ to ϕ by interpolating the three pieces of information available - $\phi(0), \phi^{\prime}(0)$, and $\phi\left(\alpha_{i}\right)$ - to obtain

$$
\begin{equation*}
\phi_{q}(\alpha)=\left(\frac{\phi\left(\alpha_{i}\right)-\phi(0)-\alpha_{0} \phi^{\prime}(0)}{\alpha_{0}^{2}}\right)+\phi^{\prime}(0) \alpha+\phi(0) \tag{1.18}
\end{equation*}
$$

Initial Step Length

For Newton and quasi-Newton methods, the step $\alpha_{0}=1$ should always be used as the initial trial step length. For methods that do not produce well scaled search directions, such as the steepest descent and conjugate gradient methods, use current information about the problem and the algorithm to make the initial guess.

1.5 Barzilai-Borwein

$$
\begin{aligned}
s_{k} & =x_{k}-x_{k-1} \\
y_{k} & =\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right)
\end{aligned}
$$

In Newton method, $p_{k}=-\nabla f^{2}\left(x_{k}\right) \nabla f\left(x_{k}\right)$.From Taylor theorem, we have

$$
\begin{equation*}
\nabla f^{2}\left(x_{k}\right)\left(x_{k}-x_{k-1}\right) \approx \nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right) \tag{1.19}
\end{equation*}
$$

,which is secant condition.

```
Algorithm 1 Line Search Algorithm
Set \(\alpha_{0} \leftarrow 0\), choose \(\alpha_{\max }>0\) and \(\alpha_{1} \in\left(0, \alpha_{\max }\right)\)
\(i \leftarrow 1\)
    repeat
        Evaluate \(\phi\left(\alpha_{i}\right)\);
        if \(\phi\left(\alpha_{i}\right)>\phi(0)+c_{1} \alpha_{i} \phi^{\prime}(0) \operatorname{or}\left[\phi\left(\alpha_{i}\right) \geq \phi\left(\alpha_{i-1}\right)\right.\) and \(\left.i>1\right]\) then
            \(\alpha_{*} \leftarrow \operatorname{zoom}\left(\alpha_{i-1}, \alpha_{i}\right)\) and stop;
        end if
        Evaluate \(\phi^{\prime}\left(\alpha_{i}\right)\)
        if \(\left|\phi^{\prime}\left(\alpha_{i}\right)\right| \leq-c_{2} \phi^{\prime}(0)\) then
            set \(\alpha_{*} \leftarrow \alpha_{i}\) and stop
        end if
        if \(\phi^{\prime}\left(\alpha_{i}\right) \geq 0\) then
            set \(\alpha_{*} \leftarrow \operatorname{zoom}\left(\alpha_{i}, \alpha_{i-1}\right)\) and stop
        end if
        Choose \(\alpha_{i+1} \in\left(\alpha_{i}, \alpha_{\max }\right)\)
        \(i \leftarrow i+1\)
    until
```

```
Algorithm 2 zoom
    repeat
        Interpolate to find a trial step length \(\alpha_{j}\) between \(\alpha_{l o}\) and \(\alpha_{h i}\)
        Evaluate \(\phi\left(\alpha_{j}\right)\)
        if \(\phi\left(\alpha_{j}\right)>\phi(0)+c_{1} \alpha_{j} \phi^{\prime}(0)\) or \(\phi\left(\alpha_{j}\right) \geq \phi\left(\alpha_{l o}\right)\) then
            \(\alpha_{h i} \leftarrow \alpha_{j}\)
        else
            Evaluate \(\phi^{\prime}\left(\alpha_{j}\right)\)
            if \(\left|\phi^{\prime}\left(\alpha_{j}\right)\right| \leq-c_{2} \phi^{\prime}(0)\) then
                Set \(\alpha_{*} \leftarrow \alpha_{j}\) and stop
            end if
            if \(\phi^{\prime}\left(\alpha_{j}\right)\left(\alpha_{h i}-\alpha_{l o}\right) \geq 0\) then
                    \(\alpha_{h i} \leftarrow \alpha_{l o}\)
            end if
            \(\alpha_{l o} \leftarrow \alpha_{j}\)
        end if
    until
```

In quasi Newton method, use B instead of H.
In Barzilai-Borwein, use $B_{k}=\alpha_{k} I$, choose $\alpha_{k}>0$ that $B_{k} s_{k} \approx y_{k}$, that
is, $\alpha s \approx y$.

$$
\begin{aligned}
& \min _{\alpha}\|\alpha s-y\|_{2}^{2} \\
& \min _{\alpha}(\alpha s-y)^{T}(\alpha s-y) \\
& \alpha=\frac{s^{T} y}{s^{T} s}
\end{aligned}
$$

Then we have

$$
\begin{align*}
& \alpha_{k} p_{k}=-\nabla f\left(x_{k}\right) \\
& p_{k}=-\frac{1}{\alpha_{k}} \nabla f\left(x_{k}\right) \\
& x_{k+1}=x_{k}-\frac{s_{k}^{T} s_{k}}{s_{k}^{T} y_{k}} \nabla f\left(x_{k}\right) \tag{1.20}
\end{align*}
$$

Alternative BB formula

Try to approximate $\nabla^{2} f\left(x_{k}\right)^{-1}$ rather than $\nabla^{2} f\left(x_{k}\right)$
State secant condition as: $s_{k} \approx f\left(x_{k}\right)^{-1} y_{k}$. Let $\tau_{k} I=\nabla^{2} f\left(x_{k}\right)^{-1}$, so

$$
\begin{align*}
\tau_{k} & =\operatorname{argmin}\left\|s_{k}-\tau_{k} y_{k}\right\|_{2}^{2} \\
& =\frac{s_{k}^{T} y_{k}}{y_{k}^{T} y_{k}} \tag{1.21}
\end{align*}
$$

Switched BB

Take BB step when k is even, and take BBalt step when k is odd.

Cyclic BB

Choose cycle length M, recompute α_{k} using B every M th iteration. Usually, cycle BB performs better than other BB methods.

2 Trust-Region Methods

Trust-region methods define a region around the current iterate within which they trust the model to be an adequate representation of the objective function, and then choose the step to be the approximate minimizer of the model in this region. They choose the direction and length of the step simultaneously.

Taylor-series expansion of f around x_{k} :

$$
\begin{equation*}
f\left(x_{k}+p\right)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} \nabla^{2} f\left(x_{k}+t p\right) p \tag{2.1}
\end{equation*}
$$

By using an approximation B_{k} to the Hessian in the second-order term, m_{k} is defined as:

$$
\begin{equation*}
m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} B_{k} p \tag{2.2}
\end{equation*}
$$

To obtain each step, we seek a solution of the subproblem

$$
\begin{equation*}
\min _{p \in R^{n}} m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} B_{k} p \text { s.t. }\|p\| \leq \Delta_{k} \tag{2.3}
\end{equation*}
$$

Measure agreement between p_{k} and f using ratios ρ of actual of two protected decrease:

$$
\begin{equation*}
\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}+p_{k}\right)}{m_{k}(0)-m_{k}\left(p_{k}\right)}=\frac{\text { actual }}{\text { protected }} \tag{2.4}
\end{equation*}
$$

Solving the TR subproblem

$$
\begin{equation*}
\min _{p \in R^{n}} m(p)=f+g^{T} p+\frac{1}{2} p^{T} B p \text { s.t. }\|p\| \leq \Delta \tag{2.5}
\end{equation*}
$$

Theorem 2.1 The vector p^{*} is a global solution of the trust-region problem

$$
\begin{equation*}
\min _{p \in R^{n}} m(p)=f+g^{T} p+\frac{1}{2} p^{T} B p \text { s.t. }\|p\| \leq \Delta \tag{2.6}
\end{equation*}
$$

if and only if p^{*} is feasible and there is a scalar $\lambda \geq 0$ such that the following conditions are satisfied:

$$
\begin{align*}
& (B+\lambda I) p^{*}=-g \tag{2.7a}\\
& \lambda\left(\Delta-\left\|p^{*}\right\|\right)=0 \tag{2.7b}
\end{align*}
$$

$(B+\lambda I)$ is positive semidefinite

```
Algorithm 3 Trust Region
    given \(\hat{\Delta}>0, \Delta_{0} \in(0, \hat{\Delta})\), and \(\eta \in[0,1 / 4]\)
    for \(k=0,1,2\) do
        Obtain \(p_{k}\) by (approximately) solving 2.5
        Evaluate \(\rho_{k}\) from 2.4
        if \(\rho<1 / 4\) then
            \(\Delta_{k+1}=1 / 4 \Delta_{k}\)
        else
            if \(\rho_{k}>3 / 4\) and \(\left\|p_{k}\right\|=\Delta_{k}\) then
                \(\Delta_{k+1}=\min \left(2 \Delta_{k}, \hat{\Delta}\right)\)
            else
                \(\Delta_{k+1}=\Delta_{k}\)
            end if
        end if
        if \(\rho_{k}>\eta\) then
            \(x_{k+1}=x_{k}+p_{k}\)
        else
            \(x_{k+1}=x_{k}\)
        end if
    end for
```


2.1 Algorithms based on the Cauchy point

The Cauchy point

Algorithm(Cauchy Point Calculation)
Find the vector p_{k}^{s} taht solves a linear version of 2.5, that is,

$$
\begin{equation*}
p_{k}^{s}=\min _{p \in R^{n}} f_{k}+g_{k}^{T} p \text { s.t. }\|p\| \leq \Delta_{k} \tag{2.8}
\end{equation*}
$$

Calculate the scalar $\tau_{k}>0$ that minimizes $m_{k}\left(\tau p_{k}^{s}\right)$ subject to
satisfying the trust-region bound, that is,

$$
\begin{equation*}
\tau_{k}=\min _{\tau \geq 0} m_{k}\left(\tau p_{k}^{s}\right) \text { s.t. }\left\|\tau p_{k}^{s}\right\| \leq \Delta_{k} \tag{2.9}
\end{equation*}
$$

Set $p_{k}^{c}=\tau_{k} p_{k}^{s}$
The solution of 2.8 is

$$
\begin{equation*}
p_{k}^{s}=-\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k} \tag{2.10}
\end{equation*}
$$

If $g_{k}^{T} B g_{k} \leq 0, \tau_{k}$ is 1 . Otherwise, τ_{k} is minimizer of $\|g\|^{3} /\left(\Delta_{k} g_{k}^{T} B_{k} g_{k}\right)$. In summary, $p_{k}^{c}=-\tau \frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}$, where $\tau_{k}=1$ if $g_{k}^{T} B_{k} g_{k} \leq 0$ or $\min \left(\left\|g_{k}\right\|^{3} /\left(\Delta_{k} g_{k}^{T} B_{k} g_{k}\right), 1\right)$ otherwise.

The Dogleg Method

It can be used when B is positive definite. When B is positive definite, the unconstrained minimize of m of problem 2.6 is $p^{B}=-B^{-1} g$. When this
point is feasible for 2.6 , it is a solution. When Δ is small relative to p^{B}, the restriction $p \leq \Delta$ ensures that quadratic term in m has little effect on the solution of 2.6. Then omit the quadratic term, the solution is $p \approx-\Delta \frac{g}{\|g\|}$

The dobleg method finds a path consisting of two line segments. The first one runs along the steepest descent direction, which is

$$
\begin{equation*}
p^{U}=-\frac{g^{T} g}{g^{T} B g} g \tag{2.11}
\end{equation*}
$$

while the second one runs from p^{U} to p^{B}. That is

$$
\tilde{p}(\tau)=\left\{\begin{array}{rll}
\tau p^{U} & : & 0 \leq \tau \leq 1 \\
p^{U}+(\tau-1)\left(p^{B}-p^{U}\right) & : & 1 \leq \tau \leq 2
\end{array}\right.
$$

Lemma 2.1 Let B be positive definte. Then

- $\|\tilde{p}(\tau)\|$ is an increasing function of τ, and
- $m(\tilde{p}(\tau))$ is a decreasing function of τ

2.2 Global Convergence

The dogleg produces approximate solutions p_{k} satisfies:

$$
\begin{equation*}
m_{k}(0)-m_{k}\left(p_{k}\right) \geq c_{1}\left\|g_{k}\right\| \min \left(\Delta_{k}, \frac{\left\|g_{k}\right\|}{\left\|B_{k}\right\|}\right) \tag{2.12}
\end{equation*}
$$

Lemma 2.2 The Cauchy point p_{k}^{c} satisfies 2.12 with $c_{1}=1 / 2$.
Theorem 2.2 Let $\eta=0$ in Algorithm 2.1. Suppose that $\left\|B_{k}\right\| \leq \beta$ for some constant β, that f is bounded below on the level set $S=\left\{x \mid f(x) \leq f\left(x_{0}\right)\right\}$ and Lipschitz continuously differentiable in the neighborhood $S\left(R_{0}\right)$ for some $R_{0}>0$, and that all approximate solutions of 2.5 satisfy the inequalities 2.12 and $\left\|p_{k}\right\| \leq$ gamma Δ_{k}, for some positive constants c_{1} and γ. We then have

$$
\begin{equation*}
\lim \inf _{k \rightarrow \infty}\left\|g_{k}\right\|=0 \tag{2.13}
\end{equation*}
$$

Theorem $2.3 \eta>0$, accept p_{k} only if $\rho_{k}>$ eta, i.e. $f\left(x_{k}\right)-f\left(x_{k}+p_{k}\right) \geq$ $\eta\left(m_{k}(0)-m_{k}\right)\left(p_{k}\right)$. Then $\lim _{k \rightarrow \infty}\|g\|=0$

2.3 Iterative solution of the subproblem

Try harder to solve the subproblem. Use theorem 2.1 with an eigenvalue decomposition to get an explicit formula for p.

$$
\begin{equation*}
p(\lambda)=-Q(\Lambda+\lambda I)^{-1} Q^{T} g=-\sum_{j=1}^{n} \frac{q_{j}^{T} g}{\lambda_{j}+\lambda} q_{j} \tag{2.14}
\end{equation*}
$$

By orthonormality of $q_{1}, q_{2}, \ldots, q_{n}$, we have

$$
\begin{equation*}
\|p(\lambda)\|=\sum_{j=1}^{n} \frac{\left(q_{j}^{T} g\right)^{2}}{\left(\lambda_{j}+\lambda\right)^{2}} \tag{2.15}
\end{equation*}
$$

Do line search to find $\lambda>-\lambda_{1}$ such that $\left.\| p(\lambda)\right)^{2}-\Delta^{2}=0$.
TR with true Hessian works even when Hessian is not positive definite.

3 Conjugate Gradient Methods

3.1 The linear conjugate gradient method

The conjugate gradient method is an iterative method for solving a linear system of equations

$$
\begin{equation*}
A x=b \tag{3.1}
\end{equation*}
$$

where A is an $n \times n$ symmetric positive definite matrix. It is equal to

$$
\begin{equation*}
\min \phi(x)=\frac{1}{2} x^{T} A x-b^{T} x \tag{3.2}
\end{equation*}
$$

Its gradient equals to the residual of the linear system

$$
\begin{equation*}
\nabla \phi(x)=A x-b=r(x) \tag{3.3}
\end{equation*}
$$

A set of nonzero vectors $\left\{p_{0}, p_{1}, \ldots, p_{l}\right\}$ is said to be conjugate with respect to the symmetric positive definite matrix A if

$$
\begin{equation*}
p_{i}^{T} A p_{j}=0 \tag{3.4}
\end{equation*}
$$

We can minimize ϕ in n steps if we minimize it along the individual directions in a conjugate set. That is

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} p_{k} \tag{3.5}
\end{equation*}
$$

where α_{k} is the one-dimensional minimizer of the quadratic function ϕ along $x_{k}+\alpha p_{k}$

$$
\begin{equation*}
\alpha_{k}=-\frac{r_{k}^{T} p_{k}}{p_{k}^{T} A p_{k}} \tag{3.6}
\end{equation*}
$$

Theorem 3.1 For any $x_{0} \in R^{n}$ the sequence $\left\{x_{k}\right\}$ generated by the conjugate direction algorithm 3.5, 3.6 converges to the solution x^{*} of the linear system 3.1 in at most n steps.

Conjugate Directions

From 3.3 and 3.5, we have

$$
\begin{equation*}
r_{k+1}=r_{k}+\alpha_{k} A p_{k} \tag{3.7}
\end{equation*}
$$

Theorem 3.2 Let $x_{0} \in R^{n}$ be any starting point and suppose that the sequence $\left\{x_{k}\right\}$ is generated by the conjugate direction algorithm 3.5, 3.6. Then

$$
\begin{equation*}
r_{k}^{T} p_{i}=0 \text { fori }=0,1, \ldots, k-1 \tag{3.8}
\end{equation*}
$$

and x_{k} is the minimizer of $\phi(x)=\frac{1}{2} x^{T} A x-b^{T} x$ over the set

$$
\begin{equation*}
\left\{x \mid x=x_{0}+\operatorname{span}\left\{p_{0}, p_{1}, \ldots, p_{k-1}\right\}\right\} \tag{3.9}
\end{equation*}
$$

Basic properties of the conjugate gradient method

The conjugate gradient method is a conjugate direction method with very special property: in generating its set of conjugate vectors, it can compute a new vector p_{k} by using only the previous vector p_{k-1}.

$$
\begin{equation*}
p_{k}=-r_{k}+\beta_{k} p_{k-1} \tag{3.10}
\end{equation*}
$$

As $p_{k-1}^{T} A p_{k}=0$,

$$
\begin{equation*}
\beta_{k}=\frac{r_{k}^{T} A p_{k-1}}{p_{k-1}^{T} A p_{k-1}} \tag{3.11}
\end{equation*}
$$

The residuals r_{i} are mutually orthogonal. Each search direction p_{k} and residual r_{k} is contained in the Krylov subspace of degree k for r_{0}, defined as

$$
\begin{equation*}
\mathcal{K}\left(r_{0} ; k\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k} r_{0}\right\} \tag{3.12}
\end{equation*}
$$

Theorem 3.3 Suppose that the kth iterate generated by the conjugate gradient method is not the solution point x^{*}. The following four properties hold:

$$
\begin{align*}
r_{k}^{T} r_{i}=0 & \text { for } i=0,1, \ldots, k-1 \tag{3.13a}\\
\operatorname{span}\left\{r_{0}, r_{1}, \ldots, r_{k}\right\} & =\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k} r_{0}\right\} \tag{3.13b}\\
\operatorname{span}\left\{p_{0}, p_{1}, \ldots, p_{k}\right\} & =\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k} r_{0}\right\} \tag{3.13c}\\
p_{k}^{T} A p_{i} & =0, \text { for } i=0,1, \ldots, k-1 \tag{3.13d}
\end{align*}
$$

Therefore, the sequence $\left\{x_{k}\right\}$ converges to x^{*} in at most n steps.

A practical form of the conjugate gradient method

Replace α and β with the following form:

$$
\begin{align*}
\alpha_{k} & =\frac{r_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}} \tag{3.14}\\
\beta_{k+1} & =\frac{r_{k+1}^{T} r_{k+1}}{r_{k}^{T} r_{k}} \tag{3.15}
\end{align*}
$$

Rate of convergence

Among all possible methods whose first k steps are restricted to Krylov subspace, algorithm using 3.14 and 3.15 is the best one.

$$
\begin{equation*}
\frac{1}{2}\left\|x-x^{*}\right\|_{A}^{2}=\frac{1}{2}\left(x-x^{*}\right) A\left(x-x^{*}\right)=\phi(x)-\phi\left(x^{*}\right) \tag{3.16}
\end{equation*}
$$

We have

$$
\begin{align*}
x_{k+1}-x^{*} & =x_{0}+\gamma_{0} r_{0}+\gamma_{1} A r_{0}+\ldots+\gamma_{k} A^{k} r_{0}-x^{*} \\
& =x_{0}-x^{*}+\left(\gamma_{0} I+\gamma_{1} A+\ldots+\gamma_{k} A^{k}\right) A\left(x_{0}-x^{*}\right) \\
& =\left[I+P_{k}(A) A\right]\left(x_{0}-x^{*}\right) \tag{3.17}
\end{align*}
$$

where $P_{k}(A)=\gamma_{0} I+\gamma_{1} A+\ldots+\gamma_{k} A^{k}$.
Eigenvalue decomposition of A :

$$
\begin{equation*}
A=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T} \tag{3.18}
\end{equation*}
$$

Since the eigenvectors span the whole space R^{n}, we can write

$$
\begin{equation*}
x_{0}-x^{*}=\sum_{i=1}^{n} \xi_{i} v_{i} \tag{3.19}
\end{equation*}
$$

So 3.17 equals to

$$
\begin{equation*}
\sum_{i=1}^{n} \xi_{i}\left(1+P_{k}\left(\lambda_{i}\right) \lambda_{i}\right) v_{i} \tag{3.20}
\end{equation*}
$$

So we have

$$
\begin{align*}
\phi\left(x_{k+1}\right)-\phi\left(x^{*}\right) & \leq \max _{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}}\left(1+P_{k}(\lambda) \lambda\right)^{2} \sum_{i=1}^{n} \xi_{i}^{2} \lambda_{i} \tag{3.21}\\
& =\max _{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}}\left(1+P_{k}(\lambda) \lambda\right)^{2}\left\|x_{0}-x^{*}\right\|_{A}^{2} \tag{3.22}
\end{align*}
$$

Theorem 3.4 If A has only r distinct eigenvalues, then the $C G$ iteration will terminate at the solution in at most r iterations.

Theorem 3.5 If A has eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$, we have

$$
\begin{equation*}
\left\|x_{k+1}-x^{*}\right\|_{A}^{2} \leq\left(\frac{\lambda_{n-k}-\lambda_{1}}{\lambda_{n-k}+\lambda_{1}}\right)^{2}\left\|x_{0}-x^{*}\right\|_{A}^{2} \tag{3.23}
\end{equation*}
$$

A is nice if its eigenvalues are clustered, or well-conditioned.

Preconditioning

Define new variable $\hat{x}=C x$, then $\hat{\phi}(\hat{x})=\frac{1}{2} \hat{x}^{T}\left(C^{-T} A C^{-1}\right) \hat{x}-\left(C^{-T} b\right)^{T} \hat{x}$. Choose C so that $C^{-T} A C$ is well-conditioned or has clustered eigenvalues.

3.2 Nonlinear Conjugate Gradient methods

The Fletcher-Reeves method Extend the conjugate gradient method to nonlinear function by making two simple changes in 3.14. First, for the step length α_{k}, perform a line search that identifies an approximate minimum of the nonlinear function f along p_{k}. Second, the residual r is replaced by the gradient of the nonlinear objective f. That is, $\beta_{k+1}^{F R}=\frac{\nabla f_{k+1}^{T} \nabla f_{k+1}}{\nabla f_{k}^{T} \nabla f_{k}}$

The Polak-Ribiere method and variants

Variants of FR method differ from each other mainly in the choice of parameter β. Polak-Ribiere defines this parameter as:

$$
\begin{equation*}
\beta_{k+1}^{P R}=\frac{\nabla f_{k+1}^{T}\left(\nabla f_{k+1}-\nabla f_{k}\right)}{\left\|f_{k}\right\|^{2}} \tag{3.24}
\end{equation*}
$$

Wolfe conditions do not guarantee that p_{k} is always a descent direction. If we define the β parameter as

$$
\begin{equation*}
\beta_{k+1}^{+}=\max \left\{\beta_{k+1}^{P R}, 0\right\} \tag{3.25}
\end{equation*}
$$

In practice, $\mathrm{PR}+$ performs more robust than FR , and their performances are influenced by the choice of the range of safeguarding.

Lemma 3.1 Suppose that $F R$ is implemented with a step length α_{k} that satisfies the strong Wolfe conditions with $0<c_{2}<\frac{1}{2}$. Then the method generates descent directions p_{k} that satisfy the following inequalities:

$$
\begin{equation*}
-\frac{1}{1-c_{2}} \leq \frac{\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|^{2}} \leq \frac{2 c_{2}-1}{1-c_{2}}, \text { for all } k=0,1, \ldots \tag{3.26}
\end{equation*}
$$

Theorem 3.6 Suppose that f is bounded and Lipschitz continuously differentiable, and $F R$ is implemented with a line search that satisfies the strong Wolfe conditions, with $0<c_{1}<c_{2}<\frac{1}{2}$. Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \inf \left\|\nabla f_{k}\right\|=0 \tag{3.27}
\end{equation*}
$$

4 Quasi-Newton Methods

In Newton method, $p_{k}=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f\left(x_{k}\right)$. In quasi Newton, use B_{k} to replace $\nabla^{2} f\left(x_{k}\right)$ or H_{k} to replace $\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1}$. That is, $p_{k}=-B_{k}^{-1} \nabla f(x)$ or $p_{k}=-H_{k} \nabla f\left(x_{k}\right)$.

Desired properties of B_{k} :

- don't use second derivations to compute it
- positive definite to guarantee descent
- symmetric
- behaves like true hessian
- B_{k+1} is small modification at B_{k}

Secant condition:

$$
\begin{equation*}
y_{k}=B_{k+1} s_{k} \tag{4.1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
s_{k}^{T} y_{k}>0 \tag{4.2}
\end{equation*}
$$

To determine B_{k+1} uniquely, we impose the additional condition that among all symmetric matrices satisfying the secant equation, B_{k+1} is, in some sense, closest to the current matrix B_{k}. That is,

$$
\begin{equation*}
\min _{B}\left\|B-B_{k}\right\| \text { s.t. } B=B^{T}, B s_{k}=y_{k} \tag{4.3}
\end{equation*}
$$

DFP updating formula:

$$
\begin{equation*}
B_{k+1}=\left(I-\rho_{k} y_{k} s_{k}^{T}\right) B_{k}\left(I-\rho_{k} s_{k} y_{k}^{T}\right)+\rho_{k} y_{k} y_{k}^{T} \tag{4.4}
\end{equation*}
$$

with $\rho_{k}=\frac{1}{y_{k}^{T} s_{k}}$. The corresponding H is

$$
\begin{equation*}
H_{k+1}=H_{k}-\frac{H_{k} y_{k} y_{k}^{T} H_{k}}{y_{k}^{T} H_{k} y_{k}}+\frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}} \tag{4.5}
\end{equation*}
$$

BFGS estimates H_{k} :

$$
\begin{equation*}
H_{k+1}=\left(I-\rho_{k} s_{k} y_{k}^{T}\right) H_{k}\left(I-\rho_{k} y_{k} s_{k}^{T}\right)+\rho_{k} s_{k} s_{k}^{T} \tag{4.6}
\end{equation*}
$$

It converges superlinearly.

4.1 The SR1 Method

In the BFGS and DFP, the updated matrix B_{k+1} differs from the predecessor B_{k} by a rand-2 matrix. SR1, symmetric-rank-1 uses rank-1 update, but it does not guarantee that the updated matrix maintains positive definiteness. It has from

$$
\begin{equation*}
B_{k+1}=B_{k}+\sigma v v^{T} \tag{4.7}
\end{equation*}
$$

As it satisfies the secant equation $y_{k}=B_{k} s_{k}$, we have

$$
\begin{equation*}
y_{k}=B_{k}+\left[\sigma v^{T} s_{k}\right] v \tag{4.8}
\end{equation*}
$$

The term in brackets is a scalar, so v must be a multiple of $y_{k}-B_{k} s_{k}$. That is,

$$
\begin{equation*}
\left(y_{k}-B_{k} s_{k}\right)=\sigma \delta^{2}\left[s_{k}^{T}\left(y_{k}-B_{k} s_{k}\right)\right]\left(y_{k}-B_{k} s_{k}\right) \tag{4.9}
\end{equation*}
$$

So the parameters should be

$$
\begin{equation*}
\sigma=\operatorname{sign}\left[s_{k}^{T}\left(y_{k}-B_{k} s_{k}\right)\right], \delta= \pm\left|s_{k}^{T}\left(y_{k}-B_{k} s_{k}\right)\right|^{-1 / 2} \tag{4.10}
\end{equation*}
$$

Hence, rank-1 updating formula is given by

$$
\begin{align*}
& B_{k+1}=B_{k}+\frac{\left(y_{k}-B_{k} s_{k}\right)\left(y_{k}-B_{k} s_{k}\right)^{T}}{\left(y_{k}-B_{k} s_{k}\right)^{T} s_{k}} \tag{4.14}\\
& H_{k+1}=H_{k}+\frac{\left(s_{k}-H_{k} y_{k}\right)\left(s_{k}-H_{k} y_{k}\right)^{T}}{\left(s_{k}-H_{k} y_{k}\right)^{T} y_{k}} \tag{4.12}
\end{align*}
$$

This is only defined when $\left(y_{k}-B_{k} s_{k}\right)^{T} s_{k} \neq 0$.

- Nice case when $\left(y_{k}-B_{k} s_{k}\right)^{T} s_{k} \neq 0$
- $y_{k}-B_{k} s_{k}=0$, set $B_{k+1}=B_{k}$
- $\left(y_{k}-B_{k} s_{k}\right)^{T} s_{k}=0$. skip the update

4.2 The Broyden class

The Broyden Class has a family of updates:

$$
\begin{equation*}
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}+\phi_{k}\left(s_{k}^{T} B_{k} s_{k}\right) v_{k} v_{k}^{T} \tag{4.13}
\end{equation*}
$$

where ϕ_{k} is a scalar parameter and

$$
\begin{equation*}
v_{k}=\left(\frac{y_{k}}{y_{k}^{T} s_{k}}-\frac{B_{k} s_{k}}{s_{k}^{T} B_{k} s_{k}}\right) \tag{4.14}
\end{equation*}
$$

Each iteration, updates has form

$$
\begin{equation*}
p_{k}=-B_{k}^{-1} \nabla f_{k}, x_{k+1}=x_{k}+p_{k} \tag{4.15}
\end{equation*}
$$

Set $\phi=0$, we get BFGS; $\phi=1$, we get DFP. $\phi=\frac{s_{k}^{T} y_{k}}{s_{k}^{T}\left(y_{k}-B_{k} s_{k}\right)}$, we get SR1.

Theorem 4.1 Suppose that $f: R^{n} \rightarrow R$ is the strongly convex quadratic function $f(x)=b^{T} x+1 / 2 x^{T} A x$, where A is symmetric and positive definite. Let x_{0} be any starting point for the iteration $B_{k} 4.15$ and B_{0} be any symmetric positive definite starting matrix, and suppose that the matrices B_{k} are updated by the Broyden formula 4.13 with $\phi_{k} \in[0,1]$. Define $\lambda_{1}^{k} \leq \lambda_{2}^{k} \leq \ldots \lambda_{n}^{k}$ to be the eigenvalues of the matrix

$$
\begin{equation*}
A^{1 / 2} B_{k}^{-1} A^{1 / 2} \tag{4.16}
\end{equation*}
$$

Then for all k, we have

$$
\begin{equation*}
\min \left\{\lambda_{i}^{k}, 1\right\} \leq \lambda_{i}^{k+1} \leq \max \left\{\lambda_{i}^{k}, 1\right\} \tag{4.17}
\end{equation*}
$$

Moreover, the property 4.17 does not hold if the Broyden parameter ϕ_{k} is chosen outside the interval $[0,1]$.

5 Large-Scale Unconstrained Optimization

5.1 LBFGS

In BFGS, each step has the from

$$
\begin{array}{r}
x_{k+1}=x_{r}-\alpha_{k} H_{k} \nabla f_{k} \\
H_{k+1}=V_{k}^{T} H_{k} V_{k}+\rho_{k} s_{k} s_{k}^{T} \\
\rho_{k}=\frac{1}{y_{k}^{T} s_{k}}, V_{k}=I-\rho_{k} y_{k} s_{k}^{T} \\
s_{k}=x_{k+1}-x_{k}, y_{k}=\nabla f_{k+1}-\nabla f_{k} \tag{5.4}
\end{array}
$$

Apply 5.2 recursively, and keep the last m steps:

$$
\begin{align*}
H_{k}= & \left(V_{k-1}^{T} \ldots V_{k-m}^{T}\right) H_{k}^{0}\left(V_{k-m} \ldots V_{k-1}\right) \\
& +\rho_{k-m}\left(V_{k-1}^{T} \ldots V_{k-m+1}^{T}\right) s_{k-m} s_{k-m}^{T}\left(V_{k-m+1} \ldots V_{k-1}\right) \\
& +\rho_{k-m+1}\left(V_{k-1}^{T} \ldots V_{k-m+2}^{T}\right) s_{k-m+1} s_{k-m+1}^{T}\left(V_{k-m+2} \ldots V_{k-1}\right) \\
& +\ldots \\
& +\rho_{k-1} s_{k-1} s_{k-1}^{T} \tag{5.5}
\end{align*}
$$

```
Algorithm 4 L-BFGS two-loop recursion
    \(q \leftarrow \nabla f_{k}\)
    for \(i=k-1, k-2, \ldots, k-m\) do
        \(\alpha_{i} \leftarrow \rho_{i} s_{i}^{T} q\)
        \(q \leftarrow q-\alpha_{i} y_{i}\)
    end for
    \(r \leftarrow H_{k}^{0} q\)
    for \(i=k-m, k-m+1, \ldots, k-1\) do
        \(\beta \leftarrow \rho_{i} y_{i}^{T} r\)
        \(r \leftarrow r+s_{i}\left(\alpha_{i}-\beta\right)\)
    end for
    stop with result \(H_{k} \nabla f_{k}=r\)
```


5.2 Inexact Newton Methods

Basic Newton step p_{k}^{N} is obtained by solving:

$$
\begin{equation*}
\nabla^{2} f_{k} p_{k}^{N}=-\nabla f_{k} \tag{5.6}
\end{equation*}
$$

The residual is

$$
\begin{equation*}
r_{k}=\nabla^{2} f_{k} p_{k}+\nabla f_{k} \tag{5.7}
\end{equation*}
$$

```
Algorithm 5 L-BFGS
    Choose starting point \(x_{0}\), integer \(m>0\)
    \(k \leftarrow 0\)
    repeat
        Choose \(H_{k}^{0}\)
        Compute \(p_{k} \leftarrow-H_{k} \nabla f_{k}\) from L-BFGS two-loop recursion
        Compute \(x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}\), where \(\alpha_{k}\) is chosen to satisfy the Wolfe
        conditions
        if \(k>m\) then
            Discard the vector pair \(\left\{s_{k-m}, y_{k-m}\right\}\) from storage
        end if
        Compute and save \(s_{k} \leftarrow x_{k+1}-x_{k}, y_{k}=\nabla f_{k+1}-\nabla f_{k}\)
        \(k \leftarrow k+1\)
    until convergence
```

Use CG to solve this problem. Terminate the CG iterations when

$$
\begin{equation*}
\left\|r_{k}\right\| \leq \eta_{k}\left\|\nabla f_{k}\right\| \tag{5.8}
\end{equation*}
$$

Each iteration of CG requires us to compute $\nabla^{2} f\left(x_{k}\right) v$ for some vector v. We approximate it by a finite difference

$$
\begin{equation*}
\nabla^{2} f(x) v \approx 1 / \epsilon\left[\nabla f\left(x_{k}+\epsilon v\right)-\nabla f\left(x_{k}\right)\right] \tag{5.9}
\end{equation*}
$$

Then we perform a two levels of iteration-line search. In the outer loop, do line searches in directions given by the inner loop. In inner loop, use CG to calculate p_{k}.

Indefiniteness: CG only works if $\nabla^{2} f\left(x_{k}\right)$ positive definite. We terminate the CG iteration as soon as a direction of negative curvature is generated.

Usually require $\left\|r_{k}\right\| \leq \eta_{k}\left\|\nabla f\left(x_{k}\right)\right\|$, where $0 \leq \eta_{k} \leq \eta<1$.
Theorem 5.1 Suppose that $\nabla^{2} f(x)$ exists and is continuous in a neighborhood of a minimizer x^{*}, with $\nabla^{2} f\left(x^{*}\right)$ is positive definite. Consider the iteration $x_{k+1}=x_{k}+p_{k}$, where p_{k} satisfies 5.8, and assume that $\eta_{k} \leq \eta$ for some constant $\eta \in[0,1)$. Then, if the starting point x_{0} is sufficiently near x^{*}, the sequence $\left\{x_{k}\right\}$ converges to x^{*} and satisfies

$$
\begin{equation*}
\left\|\nabla^{2} f\left(x^{*}\right)\left(x_{k+1}-x^{*}\right)\right\| \leq \hat{\eta}\left\|\nabla^{2} f\left(x^{*}\right)\left(x_{k}-x^{*}\right)\right\| \tag{5.10}
\end{equation*}
$$

for some constant $\hat{\eta}$ with $\eta<\hat{\eta}<1$.
In CG, it needs $\nabla^{2} f_{k} d$, we can use the approximation

$$
\begin{equation*}
\nabla^{2} f_{k} d \approx \frac{\nabla f\left(x_{k}+h d\right)-\nabla f\left(x_{k}\right)}{h} \tag{5.11}
\end{equation*}
$$

We can use a trust-region framework for inexact Newton in place of line-search framework.

Outer loop: TR framework Inner loop: if $\left\|r_{j+1}\right\| \leq \epsilon_{k}$ then stop inner iterations, set $p_{k}=z_{j+1}$.
Choose tolerance ϵ_{k}.
Generate CG steps z_{0}, z_{1}, \ldots
using CG search directions $d_{0}, d_{1}, d_{2}, \ldots$
Use $d_{0}=-\nabla f\left(x_{k}\right)$
If $d_{j}^{T} \nabla^{2} f\left(x_{k}\right) d_{j} \leq 0$, search along d_{j} : find a point that crosses TR boundary, use this as p_{k}.
Usually step $z_{j+1}=z_{j}+\alpha_{j} d_{j}$
but if $\left\|z_{j+1}\right\|>\Delta$, then set step at TR boundary.
Set $p_{i}=z_{j+1}$
Theorem 5.2 The sequence of vectors $\left\{z_{j}\right\}$ generated by algorithm above satisfies

$$
\begin{equation*}
0=\left\|z_{0}\right\|_{2}<\ldots<\left\|z_{j}\right\|_{2}<\left\|z_{j+1}\right\|_{2}<\ldots<\left\|p_{k}\right\|_{2} \leq \Delta_{k} \tag{5.12}
\end{equation*}
$$

6 Derivative-Free Optimization

6.1 Finite Differences and Noise

Use finite-difference approximation to gradient:

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}} \approx \frac{f\left(x+\epsilon e_{i}\right)-f(x)}{\epsilon} \tag{6.1}
\end{equation*}
$$

Through this, we can get a finite-difference approximation to gradient by doing n function evaluations. Can get a better gradient approximation using a centered difference formula.

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}=\frac{f\left(x+\epsilon e_{i}\right)-f\left(x-\epsilon e_{i}\right)}{2 \epsilon}+o\left(\epsilon^{3}\right) \tag{6.2}
\end{equation*}
$$

In many applications, the objective function f has the form

$$
\begin{equation*}
f(x)=h(x)+\phi(x) \tag{6.3}
\end{equation*}
$$

Define $\eta(x, \epsilon)=\max _{\|z-x\|_{\infty} \leq \epsilon}|\phi(z)|$, then we have

$$
\begin{equation*}
\left|\frac{\partial h}{\partial x_{i}}-\frac{f\left(x+\epsilon e_{i}\right)-f(x)}{\epsilon}\right|=o(\epsilon)+\frac{2 \eta(x ; \epsilon)}{\epsilon} \tag{6.4}
\end{equation*}
$$

Thus error bounded by $M \epsilon+\frac{\eta}{2}$. Choose ϵ to minimize this min:

$$
\begin{equation*}
\epsilon=\sqrt{\frac{\eta}{M}} \tag{6.5}
\end{equation*}
$$

6.2 Model-Based methods

Wish to construct a quadratic model of the form

$$
\begin{equation*}
m_{k}\left(x_{k}+p\right)=c+g^{T} p+1 / 2 p^{T} G p \tag{6.6}
\end{equation*}
$$

We want $m_{k}\left(x_{k}+p\right)=f\left(x_{k}+p\right)$ at a bunch of p values:

$$
\begin{equation*}
m_{k}\left(y^{l}\right)=f\left(y^{l}\right), l=1,2, \ldots, q \tag{6.7}
\end{equation*}
$$

As there are $1 / 2(n+1)(n+2)$ coefficients $(c, g$, and G taking into account the symmetry of G), the interpolation conditions determine m_{k} uniquely only if $q=1 / 2(n+1)(n+2)$.

An alternative is that just do $n+1$ initial evaluations and construct linear model with $G=0$. Take steps based on the linear model, after accumulating f values at enough points, switch to quadratic model.

Replacing one member of $\left\{y^{1}, y^{2}, \ldots, y^{q}\right\}$ equals to replacing one row of matrix Y, and we would like to do this in a way that makes Y more nonsingular. Use determinant $\delta(\eta)$ to measure nonsingularty. In doing replacement, try to increase $|\delta(\eta)|$.

Perform a trust region. In each step, if the improvement is less than η, shrink Δ_{k}, improve $\left\{y^{1}, y^{2}, \ldots, y^{q}\right\}$

Idea is to do a least-change modification to G :

$$
\begin{array}{r}
\min _{f, g, G}\left\|G-G_{k}\right\|_{F}^{2} \\
\text { s.t. } G \text { symmetric } \\
m\left(y^{l}\right)=f\left(y^{l}\right), l=1,2, \ldots, \hat{q} \tag{6.8}
\end{array}
$$

6.3 Coordinate Search and Pattern-Search Methods

Coordinate Search Search along different coordinate directions $x \in \mathcal{R}^{n}$. Search directions e_{i}, need to cycle though all $i=1, \ldots, n$

Pattern Search At each x_{k}, we have a set of possible directions \mathcal{D}_{k}, search along some or all directions in \mathcal{D}_{k} until we find a point $x_{k}+\gamma_{k} p_{k}$ for $\gamma>0$ with "sufficiently better" f value $p_{k} \in \mathcal{D}_{k}$. If no $p_{k} \in \mathcal{D}_{k}$ have $f\left(x_{k}+\gamma_{k} p_{k}\right)=f\left(x_{k}\right)-\rho\left(\gamma_{k}\right)$, decrease γ_{k} and repeat.

Validity requirement: for any $v \in \mathcal{R}^{n}$ that there is at least one $p \in \mathcal{D}_{k}$ such that $p^{T} v>0$.

$$
\begin{equation*}
\kappa\left(\mathcal{D}_{k}\right)=\min _{v \in R^{n}} \max _{p \in \mathcal{D}_{k}} \frac{v^{T} p}{\|v\|\|p\|} \geq \delta \tag{6.9}
\end{equation*}
$$

References

[1] Stephen J. Wright Jorge Nocedal. Numerical Optimization. Springer, 2 edition, 2006.

