
Machine Learning:
Decision Trees

CS540

Jerry Zhu

University of Wisconsin-Madison

[Some slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials and Chuck Dyer, with permission.]

http://www.cs.cmu.edu/~awm/tutorials

x

• The input

• These names are the same: example, point,
instance, item, input

• Usually represented by a feature vector

– These names are the same: attribute, feature

– For decision trees, we will especially focus on
discrete features (though continuous features are
possible, see end of slides)

Example: mushrooms

http://www.usask.ca/biology/fungi/

Mushroom features
1. cap-shape: bell=b,conical=c,convex=x,flat=f,

knobbed=k,sunken=s

2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s

3. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r,
pink=p,purple=u,red=e,white=w,yellow=y

4. bruises?: bruises=t,no=f

5. odor: almond=a,anise=l,creosote=c,fishy=y,foul=f,
musty=m,none=n,pungent=p,spicy=s

6. gill-attachment: attached=a,descending=d,free=f,notched=n

7. …

y

• The output

• These names are the same: label, target, goal

• It can be

– Continuous, as in our population
predictionRegression

– Discrete, e.g., is this mushroom x edible or
poisonous? Classification

Two mushrooms
x1=x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u

y1=p

x2=x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g

y2=e

 1. cap-shape: bell=b,conical=c,convex=x,flat=f,

knobbed=k,sunken=s

2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s

3. cap-color:

brown=n,buff=b,cinnamon=c,gray=g,green=r,

pink=p,purple=u,red=e,white=w,yellow=y

4. …

Supervised Learning
• Training set: n pairs of example, label:

(x1,y1)…(xn,yn)

• A predictor (i.e., hypothesis: classifier,
regression function) f: x y

• Hypothesis space: space of predictors, e.g.,
the set of d-th order polynomials.

• Find the “best” function in the hypothesis
space that generalizes well.

• Performance measure: MSE for regression,
accuracy or error rate for classification

Evaluating classifiers
• During training

– Train a classifier from a training set (x1,y1), (x2,y2),
…, (xn,yn).

• During testing

– For new test data xn+1…xn+m, your classifier
generates predicted labels y’n+1… y’n+m

• Test set accuracy:

– You need to know the true test labels yn+1… yn+m

– Test set accuracy:

– Test set error rate = 1 – acc

mn

ni

yy iim
acc

1

'1
1

Decision Trees

• One kind of classifier (supervised learning)

• Outline:

– The tree

– Algorithm

– Mutual information of questions

– Overfitting and Pruning

– Extensions: real-valued features, treerules,
pro/con

A Decision Tree

• A decision tree has 2 kinds of nodes

1. Each leaf node has a class label, determined by
majority vote of training examples reaching that
leaf.

2. Each internal node is a question on features. It
branches out according to the answers.

Automobile Miles-per-gallon prediction
mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe

A very small decision tree

Internal node

question: “what is the

number of

cylinders”?

Leaves: classify by

majority vote

A bigger decision tree

question: “what is the

value of maker”?

question: “what is the

value of

horsepower”?

1. Do not split when all

examples have the same

label

2. Can not split when we run

out of questions

The full
decision tree

Decision tree algorithm
buildtree(examples, questions, default)
/* examples: a list of training examples

 questions: a set of candidate questions, e.g., “what’s the value of feature xi?”

 default: default label prediction, e.g., over-all majority vote */

IF empty(examples) THEN return(default)

IF (examples have same label y) THEN return(y)

IF empty(questions) THEN return(majority vote in examples)

q = best_question(examples, questions)

Let there be n answers to q
– Create and return an internal node with n children

– The ith child is built by calling

buildtree({example|q=ith answer}, questions\{q}, default)

The best question

• What do we want: pure leaf nodes, i.e. all examples
having (almost) the same y.

• A good question a split that results in pure child
nodes

• How do we measure the degree of purity induced by
a question? Here’s one possibility (Max-Gain in
book):

mutual information

(a.k.a. information gain)
A quantity from information theory

Entropy

• At the current node, there are n=n1+…+nk examples

– n1 examples have label y1

– n2 examples have label y2

– …

– nk examples have label yk

• What’s the impurity of the node?

• Turn it into a game: if I put these examples in a bag,
and grab one at random, what is the probability the
example has label yi?

Entropy
• Probability estimated from samples:

 with probability p1=n1/n the example has label y1

 with probability p2=n2/n the example has label y2

 …

 with probability pk=nk/n the example has label yk

• p1+p2+…+pk=1

• The “outcome” of the draw is a random variable y
with probability (p1, p2, …, pk)

• What’s the impurity of the node what’s the
uncertainty of y in a random drawing?

Entropy

• Interpretation: The number of yes/no questions
(bits) needed on average to pin down the value of y
in a random drawing

H(y)= H(y)= H(y)=

k

i

ii

k

i

ii

pp

yYyYYH

1

2

1

2

log

)Pr(log)Pr()(

Entropy

p(head)=0.5

p(tail)=0.5

H=1

p(head)=0.51

p(tail)=0.49

H=0.9997

biased

coin

p(head)=?

p(tail)=?

H=?

Jerry’s coin

Conditional entropy

• Y: label. X: a question (e.g., a feature). v: an
answer to the question

• Pr(Y|X=v): conditional probability

Xv

k

i

ii

vXYHvXXYH

vXyYvXyYvXYH

 of values:

1

2

)|()Pr()|(

)|Pr(log)|Pr()|(

Information gain

• Information gain, or mutual information

• Choose question (feature) X which maximizes
I(Y;X).

)|()();(XYHYHXYI

Example
• Features: color, shape, size

• What’s the best question at root?

+ -

The training set

Example Color Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small -

5 Green Square Small -

6 Green Square Big -

H(class)=

H(class | color)=

 green is - blue is +

Example Color Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small -

5 Green Square Small -

6 Green Square Big -

H(class)= H(3/6,3/6) = 1

H(class | color)= 3/6 * H(2/3,1/3) + 1/6 * H(1,0) + 2/6 * H(0,1)

3 out of 6

are red
1 out of 6

is blue
2 out of 6

are green

2 of the

red are +

Example Color Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small -

5 Green Square Small -

6 Green Square Big -

H(class)= H(3/6,3/6) = 1

H(class | color)= 3/6 * H(2/3,1/3) + 1/6 * H(1,0) + 2/6 * H(0,1)

I(class; color) = H(class) – H(class | color) = 0.54 bits

Example Color Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small -

5 Green Square Small -

6 Green Square Big -

H(class)= H(3/6,3/6) = 1

H(class | shape)= 4/6 * H(1/2, 1/2) + 2/6 * H(1/2,1/2)

I(class; shape) = H(class) – H(class | shape) = 0 bits

Shape tells us

nothing about

the class!

Example Color Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small -

5 Green Square Small -

6 Green Square Big -

H(class)= H(3/6,3/6) = 1

H(class | size)= 4/6 * H(3/4, 1/4) + 2/6 * H(0,1)

I(class; size) = H(class) – H(class | size) = 0.46 bits

Example Color Shape Size Class

1 Red Square Big +

2 Blue Square Big +

3 Red Circle Big +

4 Red Circle Small -

5 Green Square Small -

6 Green Square Big -

I(class; color) = H(class) – H(class | color) = 0.54 bits

I(class; shape) = H(class) – H(class | shape) = 0 bits

I(class; size) = H(class) – H(class | size) = 0.46 bits

 We select color as the question at root

Overfitting Example (regression):
 Predicting US Population

• We have some
training data
(n=11)

• What will the
population be
in 2020?

 x=Year y=Million
 1900 75.995
 1910 91.972
 1920 105.71
 1930 123.2
 1940 131.67
 1950 150.7
 1960 179.32
 1970 203.21
 1980 226.51
 1990 249.63
 2000 281.42

Regression: Polynomial fit

• The degree d (complexity of the model) is
important

• Fit (=learn) coefficients cd, … c0 to minimize
Mean Squared Error (MSE) on training data

• Matlab demo: USpopulation.m

01

1

1)(cxcxcxcxf d

d

d

d

n

i

ii xfy
n

MSE
1

2
)(

1

Overfitting

• As d increases, MSE on training data improves,
but prediction outside training data worsens

degree=0 MSE=4181.451643
degree=1 MSE=79.600506
degree=2 MSE=9.346899
degree=3 MSE=9.289570
degree=4 MSE=7.420147
degree=5 MSE=5.310130
degree=6 MSE=2.493168
degree=7 MSE=2.278311
degree=8 MSE=1.257978
degree=9 MSE=0.001433
degree=10 MSE=0.000000

Overfit a decision tree

a b c d e y

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 1

: : : : : :

1 1 1 1 1 1

Five inputs, all bits, are
generated in all 32 possible
combinations

Output y = copy of e,
Except a random 25%
of the records have y
set to the opposite of e

3
2
 r

e
co

rd
s

Overfit a decision tree

• The test set is constructed similarly

– y=e, but 25% the time we corrupt it by y=e

– The corruptions in training and test sets are
independent

• The training and test sets are the same, except

– Some y’s are corrupted in training, but not in test

– Some y’s are corrupted in test, but not in training

Overfit a decision tree
• We build a full tree on the training set

Root

e=0

a=0 a=1

e=1

a=0 a=1

Training set accuracy = 100%
25% of these training leaf node labels will be corrupted (e)

Overfit a decision tree

• And classify the test data with the tree

Root

e=0

a=0 a=1

e=1

a=0 a=1

25% of the test examples are corrupted – independent of training data

Overfit a decision tree

On average:

• ¾ training data uncorrupted

– ¾ of these are uncorrupted in test – correct labels

– ¼ of these are corrupted in test – wrong

• ¼ training data corrupted

– ¾ of these are uncorrupted in test – wrong

– ¼ of these are also corrupted in test – correct labels

• Test accuracy = ¾ * ¾ + ¼ * ¼ = 5/8 = 62.5%

Overfit a decision tree

• But if we knew a,b,c,d are irrelevant features and don’t use them in the

tree…

a b c d e y

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 1

: : : : : :

1 1 1 1 1 1

Pretend they don’t exist

Overfit a decision tree

• The tree would be

Root

e=0 e=1

In training data, about ¾ y’s are

0 here. Majority vote predicts

y=0

In training data, about ¾ y’s are

1 here. Majority vote predicts

y=1

In test data, ¼ y’s are different from e.

test accuracy = ?

Overfit a decision tree

• The tree would be

Root

e=0 e=1

In training data, about ¾ y’s are

0 here. Majority vote predicts

y=0

In training data, about ¾ y’s are

1 here. Majority vote predicts

y=1

In test data, ¼ y’s are different from e.

test accuracy = ¾ = 75% (better!)

Full tree test accuracy = ¾ * ¾ + ¼ * ¼ = 5/8 = 62.5%

Overfit a decision tree

• In the full tree, we overfit by learning non-existent relations (noise)

Root

e=0

a=0 a=1

e=1

a=0 a=1

Avoid overfitting: pruning

Pruning with a tuning set

1. Randomly split data into TRAIN and TUNE, say
70% and 30%

2. Build a full tree using only TRAIN

3. Prune the tree down on the TUNE set. On the
next page you’ll see a greedy version.

Pruning
Prune(tree T, TUNE set)

1. Compute T’s accuracy on TUNE, call it A(T)

2. For every internal node N in T:
a) New tree TN = copy of T, but prune (delete) the subtree under N.

b) N becomes a leaf node in TN. The label is the majority vote of TRAIN
examples reaching N.

c) A(TN) = TN’s accuracy on TUNE

3. Let T* be the tree (among the TN’s and T) with the largest
A(). Set TT* /* prune */

4. Repeat from step 1 until no more improvement available.
Return T.

Real-valued features

• What if some (or all) of the features x1, x2, …,
xk are real-valued?

• Example: x1=height (in inches)

• Idea 1: branch on each possible numerical
value.

Real-valued features

• What if some (or all) of the features x1, x2, …, xk are real-valued?

• Example: x1=height (in inches)

• Idea 1: branch on each possible numerical value. (fragments the

training data and prone to overfitting)

• Idea 2: use questions in the form of (x1>t?), where t is a threshold.

There are fast ways to try all(?) t.

?)|()(?)|(

)|()()|()(?)|(

txyHyHtxyI

txyHtxptxyHtxptxyH

ii

iiiii

What does the feature space look like?

Axis-parallel cuts

Tree Rules

• Each path, from the root to a leaf, corresponds to a
rule where all of the decisions leading to the leaf
define the antecedent to the rule, and the
consequent is the classification at the leaf node.

• For example, from the tree in the color/shape/size
example, we could generate the rule:

if color = red and size = big then +

Conclusions

• Decision trees are popular tools for data mining

– Easy to understand

– Easy to implement

– Easy to use

– Computationally cheap

• Overfitting might happen

• We used decision trees for classification (predicting a
categorical output from categorical or real inputs)

What you should know

• Trees for classification

• Top-down tree construction algorithm

• Information gain

• Overfitting

• Pruning

• Real-valued features

