# Machine Learning: Decision Trees 

## CS540 <br> Jerry Zhu <br> University of Wisconsin-Madison

[ Some slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials and Chuck Dyer, with permission.]

## $x$

- The input
- These names are the same: example, point, instance, item, input
- Usually represented by a feature vector
- These names are the same: attribute, feature
- For decision trees, we will especially focus on discrete features (though continuous features are possible, see end of slides)


## Example: mushrooms

Mushroom cap shapes


convex

bell-shaped

conical

knobbed

flat

sunken

## Mushroom cap sufaces



Annular rings

http://www.usask.ca/biology/fungi/

## Mushroonfeatures

1. cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
3. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y
4. bruises?: bruises=t,no=f
5. odor: almond=a,anise=l,creosote=c,fishy=y,foul=f, musty $=m$,none $=n$,pungent $=p, s p i c y=s$
6. gill-attachment: attached=a,descending=d,free=f,notched=n
7. ...

## $y$

- The output
- These names are the same: label, target, goal
- It can be
- Continuous, as in our population prediction $\rightarrow$ Regression
- Discrete, e.g., is this mushroom x edible or poisonous? $\rightarrow$ Classification


## Two mushrooms

$$
\begin{aligned}
& x_{1}=x, s, n, t, p, f, c, n, k, e, e, s, s, w, w, p, w, o, p, k, s, u \\
& y_{1}=p \\
& x_{2}=x, s, y, t, a, f, c, b, k, e, c, s, s, w, w, p, w, o, p, n, n, g \\
& y_{2}=e
\end{aligned}
$$

1. cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
3. cap-color:
brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple $=u$, red $=e$, white $=w, y$ ellow $=y$
4. 

## Supervised Learning

- Training set: n pairs of example, label: $\left(x_{1}, y_{1}\right) . .\left(x_{n}, y_{n}\right)$
- A predictor (i.e., hypothesis: classifier, regression function) $f: x \rightarrow y$
- Hypothesis space: space of predictors, e.g., the set of $d$-th order polynomials.
- Find the "best" function in the hypothesis space that generalizes well.
- Performance measure: MSE for regression, accuracy or error rate for classification


## Evaluating classifiers

- During training
- Train a classifier from a training set $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, $\ldots,\left(x_{n}, y_{n}\right)$.
- During testing
- For new test data $x_{n+1} \ldots x_{n+m}$, your classifier generates predicted labels $y^{\prime}{ }_{n+1} \cdots y^{\prime}{ }_{n+m}$
- Test set accuracy:
- You need to know the true test labels $\mathrm{y}_{\mathrm{n}+1} \cdots \mathrm{y}_{\mathrm{n}+\mathrm{m}}$
- Test set accuracy: acc $=\frac{1}{m} \sum_{i=n+1}^{n+m} 1_{y_{i}=y_{i}^{\prime}}$
- Test set error rate $=1$ - acc ${ }^{2}$


## Decision Trees

- One kind of classifier (supervised learning)
- Outline:
- The tree
- Algorithm
- Mutual information of questions
- Overfitting and Pruning
- Extensions: real-valued features, tree $\rightarrow$ rules, pro/con


## A Decision Tree

- A decision tree has 2 kinds of nodes

1. Each leaf node has a class label, determined by majority vote of training examples reaching that leaf.
2. Each internal node is a question on features. It branches out according to the answers.

## Automobile Miles-per-gallon prediction



| mpg | cylinders | displacement | horsepower | weight | acceleration | modelyear | maker |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| good | 4 | low | low | low | high | 75 to 78 | asia |
| bad | 6 | medium | medium | medium | medium | 70to74 | america |
| bad | 4 | medium | medium | medium | low | 75 to 78 | europe |
| bad | 8 | high | high | high | low | 70to74 | america |
| bad | 6 | medium | medium | medium | medium | 70to74 | america |
| bad | 4 | low | medium | low | medium | 70to74 | asia |
| bad | 4 | low | medium | low | low | 70to74 | asia |
| bad | 8 | high | high | high | low | 75to78 | america |
| : | : | : |  |  | : |  |  |
| : | : | : |  |  | : |  |  |
| : | . | : | . | : | : |  | . |
| bad | 8 | high | high | high | low | 70to74 | america |
| good |  | high | medium | high | high | 79to83 | america |
| bad | 8 |  | high | high | low | 75 to 78 | america |
| good | 4 | low | low | low | low | 79to83 | america |
| bad | 6 | medium | medium | medium | high | 75 to 78 | america |
| good | 4 | medium | low | low | low | 79to83 | america |
| good |  | low | low | medium | high | 79t083 | america |
| bad |  | high | high | high | low | 70to74 | america |
| good | 4 | low | medium | low | medium | 75 to 78 | europe |
| bad |  | medium | medium | medium | medium | 75 to 78 | europe |

## A very small decision tree



## A bigger decision tree




## Decision tree algorithm

buildtree(examples, questions, default)
/* examples: a list of training examples
questions: a set of candidate questions, e.g., "what's the value of feature $x_{i}$ ?"
default: default label prediction, e.g., over-all majority vote */
IF empty(examples) THEN return(default)
IF (examples have same label y) THEN return(y)
IF empty(questions) THEN return(majority vote in examples)
$q$ = best_question(examples, questions)
Let there be n answers to q

- Create and return an internal node with $n$ children
- The ${ }^{\text {th }}$ child is built by calling buildtree(\{example $\mid \mathrm{q}=\mathrm{i}^{\mathrm{th}}$ answer\}, questions $\backslash\{\mathrm{q}\}$, default)


## The best question

- What do we want: pure leaf nodes, i.e. all examples having (almost) the same y.
- A good question $\rightarrow$ a split that results in pure child nodes
- How do we measure the degree of purity induced by a question? Here's one possibility (Max-Gain in book):

> mutual information (a.k.a. information gain)
> Aquantity from information theory

## Entropy

- At the current node, there are $\mathrm{n}=\mathrm{n}_{1}+\ldots+\mathrm{n}_{\mathrm{k}}$ examples
$-n_{1}$ examples have label $y_{1}$
$-n_{2}$ examples have label $y_{2}$
- ...
- $n_{k}$ examples have label $y_{k}$
- What's the impurity of the node?
- Turn it into a game: if I put these examples in a bag, and grab one at random, what is the probability the example has label $y_{i}$ ?


## Entropy

- Probability estimated from samples:
- with probability $p_{1}=n_{1} / n$ the example has label $y_{1}$
- with probability $p_{2}=n_{2} / n$ the example has label $y_{2}$
- with probability $p_{k}=n_{k} / n$ the example has label $y_{k}$
- $\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{k}}=1$
- The "outcome" of the draw is a random variable $y$ with probability $\left(p_{1}, p_{2}, \ldots, p_{k}\right)$
- What's the impurity of the node $\rightarrow$ what's the uncertainty of $y$ in a random drawing?

$$
\begin{aligned}
& \text { Entropy } \\
& \begin{aligned}
H(Y) & =\sum_{i=1}^{k}-\operatorname{Pr}\left(Y=y_{i}\right) \log _{2} \operatorname{Pr}\left(Y=y_{i}\right) \\
= & \sum_{i=1}^{k}-p_{i} \log _{2} p_{i}
\end{aligned}
\end{aligned}
$$

- Interpretation: The number of yes/no questions (bits) needed on average to pin down the value of $y$ in a random drawing

$H(y)=$
$H(y)=$
$H(y)=$


## Entropy


$p($ head $)=0.5$
p (tail) $=0.5$
$\mathrm{H}=1$

$p$ (head) $=0.51$
p (tail) $=0.49$
$\mathrm{H}=0.9997$

p (head)=?
p (tail)=?
$\mathrm{H}=$ ?

## Conditional entropy

$$
\begin{aligned}
& H(Y \mid X=v)=\sum_{i=1}^{k}-\operatorname{Pr}\left(Y=y_{i} \mid X=v\right) \log _{2} \operatorname{Pr}\left(Y=y_{i} \mid X=v\right) \\
& H(Y \mid X)=\sum_{v: \text { valuesof } X} \operatorname{Pr}(X=v) H(Y \mid X=v)
\end{aligned}
$$

- $Y$ : label. $X$ : a question (e.g., a feature). $v:$ an answer to the question
- $\operatorname{Pr}(\mathrm{Y} \mid \mathrm{X}=\mathrm{v})$ : conditional probability


## Information gain

- Information gain, or mutual information

$$
I(Y ; X)=H(Y)-H(Y \mid X)
$$

- Choose question (feature) $X$ which maximizes I(Y;X).


## Example

- Features: color, shape, size
- What's the best question at root?



## The training set

| Example | Color | Shape | Size | Class |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Red | Square | Big | + |
| 2 | Blue | Square | Big | + |
| 3 | Red | Circle | Big | + |
| 4 | Red | Circle | Small | - |
| 5 | Green | Square | Small | - |
| 6 | Green | Square | Big | - |

H (class)=
H(class | color)=

| Example | Color | Shape | Size | Class |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Red | Square | Big | + |
| 2 | Blue | Square | Big | + |
| 3 | Red | Circle | Big | + |
| 4 | Red | Circle | Small | - |
| 5 | Green | Square | Small | - |
| 6 | Green | Square | Big | - |

H (class) $=\mathrm{H}(3 / 6,3 / 6)=1$
$H$ (class | color) $=3 / 6$ * $H(2 / 3,1 / 3)+1 / 6$ * $H(1,0)+2 / 6$ * $H(0,1)$


| Example | Color | Shape | Size | Class |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Red | Square | Big | + |
| 2 | Blue | Square | Big | + |
| 3 | Red | Circle | Big | + |
| 4 | Red | Circle | Small | - |
| 5 | Green | Square | Small | - |
| 6 | Green | Square | Big | - |

$H($ class $)=H(3 / 6,3 / 6)=1$
$H$ (class | color) $=3 / 6$ * $H(2 / 3,1 / 3)+1 / 6$ * $H(1,0)+2 / 6$ * $H(0,1)$
(class; color) $=\mathrm{H}$ (class) -H (class $\mid$ color) $=0.54$ bits

| Example | Color | Shape | Size | Class |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Red | Square | Big | + |
| 2 | Blue | Square | Big | + |
| 3 | Red | Circle | Big | + |
| 4 | Red | Circle | Small | - |
| 5 | Green | Square | Small | - |
| 6 | Green | Square | Big | - |

H (class) $=\mathrm{H}(3 / 6,3 / 6)=1$
$H$ (class | shape) $=4 / 6$ * $H(1 / 2,1 / 2)+2 / 6$ * $H(1 / 2,1 / 2)$ I(class; shape) $=\mathrm{H}$ (class) -H (class $\mid$ shape $)=0$ bits

Shape tells us nothing about the class!

| Example | Color | Shape | Size | Class |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Red | Square | Big | + |
| 2 | Blue | Square | Big | + |
| 3 | Red | Circle | Big | + |
| 4 | Red | Circle | Small | - |
| 5 | Green | Square | Small | - |
| 6 | Green | Square | Big | - |

$H$ (class) $=\mathrm{H}(3 / 6,3 / 6)=1$
$H$ (class | size) $=4 / 6$ * $\mathrm{H}(3 / 4,1 / 4)+2 / 6$ * $\mathrm{H}(0,1)$
I (class; size) $=\mathrm{H}($ class $)-\mathrm{H}$ (class $\mid$ size $)=0.46$ bits

| Example | Color | Shape | Size | Class |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Red | Square | Big | + |
| 2 | Blue | Square | Big | + |
| 3 | Red | Circle | Big | + |
| 4 | Red | Circle | Small | - |
| 5 | Green | Square | Small | - |
| 6 | Green | Square | Big | - |

I(class; color) $=\mathrm{H}$ (class) -H (class $\mid$ color) $=0.54$ bits I(class; shape) $=\mathrm{H}$ (class) -H (class | shape) $=0$ bits I (class; size) $=\mathrm{H}$ (class) -H (class $\mid$ size $)=0.46$ bits
$\rightarrow$ We select color as the question at root

## Overfitting Example (regression):

Predicting US Population
$x=$ Year $\quad y=$ Million
190075.995
191091.972
$1920 \quad 105.71$
$1930 \quad 123.2$
$1940 \quad 131.67$
$1950 \quad 150.7$
$1960 \quad 179.32$
$1970 \quad 203.21$
$1980 \quad 226.51$
1990249.63
$2000 \quad 281.42$

- We have some training data ( $n=11$ )
- What will the population be in 2020?


## Regression: Polynomial fit

- The degree $d$ (complexity of the model) is important

$$
f(x)=c_{d} x^{d}+c_{d-1} x^{d-1}+\cdots+c_{1} x+c_{0}
$$

- Fit (=learn) coefficients $c_{d} \ldots c_{0}$ to minimize Mean Squared Error (MSE) on training data

$$
M S E=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

- Matlab demo: USpopulation.m


## Overfitting

- As dincreases, MSE on training data improves, but prediction outside training data worsens
degree=0 MSE=4181.451643 degree=1 MSE=79.600506 degree=2 MSE=9.346899 degree=3 MSE=9.289570 degree=4 MSE=7.420147 degree=5 MSE=5.310130 degree=6 MSE=2.493168 degree=7 MSE=2.278311 degree=8 MSE=1.257978 degree=9 MSE=0.001433 degree=10 MSE=0.000000



## Overfit a decision tree



## Overfit a decision tree

- The test set is constructed similarly
$-\mathrm{y}=\mathrm{e}$, but $25 \%$ the time we corrupt it by $\mathrm{y}=\neg \mathrm{e}$
- The corruptions in training and test sets are independent
- The training and test sets are the same, except
- Some y's are corrupted in training, but not in test
- Some y's are corrupted in test, but not in training


## Overfit a decision tree

- We build a full tree on the training set


Training set accuracy $=100 \%$
$25 \%$ of these training leaf node labels will be corrupted ( $\neq \mathrm{e}$ )

## Overfit a decision tree

- And classify the test data with the tree

$25 \%$ of the test examples are corrupted - independent of training data


## Overfit a decision tree

On average:

- $3 / 4$ training data uncorrupted
$-3 / 4$ of these are uncorrupted in test - correct labels
- $1 / 4$ of these are corrupted in test - wrong
- $1 / 4$ training data corrupted
$-3 / 4$ of these are uncorrupted in test - wrong
- $1 / 4$ of these are also corrupted in test - correct labels
- Test accuracy $=3 / 4 * 3 / 4+1 / 4 * 1 / 4=5 / 8=62.5 \%$


## Overfit a decision tree

- But if we knew $a, b, c, d$ are irrelevant features and don't use them in the tree...

Pretend they don't exist

| a | b | c | d | e | y |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 1 |
| $:$ | $:$ | $:$ | $:$ | $:$ | $:$ |
| 1 | 1 | 1 | 1 | 1 | 1 |

## Overfit a decision tree

- The tree would be


In training data, about $3 / 4 \mathrm{y}^{\prime}$ s are 0 here. Majority vote predicts $\mathrm{y}=0$

In training data, about $3 / 4$ y's are 1 here. Majority vote predicts $y=1$

In test data, $1 / 4 \mathrm{y}$ 's are different from e .
test accuracy = ?

## Overfit a decision tree

- The tree would be


In training data, about $3 / 4 \mathrm{y}^{\prime}$ s are 0 here. Majority vote predicts $\mathrm{y}=0$

In training data, about $3 / 4$ y's are 1 here. Majority vote predicts $y=1$

In test data, $1 / 4 \mathrm{y}$ 's are different from e.
test accuracy $=3 / 4=75 \%$ (better!)

Full tree test accuracy $=3 / 4 * 3 / 4+1 / 4 * 1 / 4=5 / 8=62.5 \%$

## Overfit a decision tree

- In the full tree, we overfit by learning non-existent relations (noise)



## Avoid overfitting: pruning

Pruning with a tuning set

1. Randomly split data into TRAIN and TUNE, say 70\% and 30\%
2. Build a full tree using only TRAIN
3. Prune the tree down on the TUNE set. On the next page you'll see a greedy version.

## Pruning

## Prune(tree T, TUNE set)

1. Compute $\mathrm{T}^{\prime}$ 's accuracy on TUNE, call it $\mathrm{A}(\mathrm{T})$
2. For every internal node N in T :
a) New tree $\mathrm{T}_{\mathrm{N}}=$ copy of T , but prune (delete) the subtree under N .
b) $N$ becomes a leaf node in $T_{N}$. The label is the majority vote of TRAIN examples reaching N .
c) $A\left(T_{N}\right)=T_{N}$ 's accuracy on TUNE
3. Let $\mathrm{T}^{*}$ be the tree (among the $\mathrm{T}_{\mathrm{N}}$ 's and T ) with the largest A() . Set $T \leftarrow \mathrm{~T}^{*} /{ }^{*}$ prune */
4. Repeat from step 1 until no more improvement available. Return T.

## Real-valued features

- What if some (or all) of the features $x 1, x 2, \ldots$, xk are real-valued?
- Example: $x 1=$ height (in inches)
- Idea 1: branch on each possible numerical value.


## Real-valued features

- What if some (or all) of the features $x 1, x 2, \ldots, x k$ are real-valued?
- Example: $x 1=$ height (in inches)
- Idea 1: branch on each possible numerical value. (fragments the training data and prone to overfitting)
- Idea 2: use questions in the form of ( $\mathrm{x} 1>\mathrm{t}$ ?), where t is a threshold. There are fast ways to try all(?) t.

$$
\begin{gathered}
H\left(y \mid x_{i}>t ?\right)=p\left(x_{i}>t\right) H\left(y \mid x_{i}>t\right)+p\left(x_{i} \leq t\right) H\left(y \mid x_{i} \leq t\right) \\
I\left(y \mid x_{i}>t ?\right)=H(y)-H\left(y \mid x_{i}>t ?\right)
\end{gathered}
$$

## What does the feature space look like?

Axis-parallel cuts

## Tree $\rightarrow$ Rules

- Each path, from the root to a leaf, corresponds to a rule where all of the decisions leading to the leaf define the antecedent to the rule, and the consequent is the classification at the leaf node.
- For example, from the tree in the color/shape/size example, we could generate the rule:

$$
\text { if color = red and size = big then }+
$$

## Conclusions

- Decision trees are popular tools for data mining
- Easy to understand
- Easy to implement
- Easy to use
- Computationally cheap
- Overfitting might happen
- We used decision trees for classification (predicting a categorical output from categorical or real inputs)


## What you should know

- Trees for classification
- Top-down tree construction algorithm
- Information gain
- Overfitting
- Pruning
- Real-valued features

