The Radial Basis Function Kernel

The Radial basis function kernel, also called the RBF kernel, or Gaussian kernel, is a kernel that is in the form of a radial basis function (more specifically, a Gaussian function). The RBF kernel is defined as

$$
K_{\mathrm{RBF}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left[-\gamma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right]
$$

where γ is a parameter that sets the "spread" of the kernel.

The RBF kernel as a projection into infinite dimensions

Recall a kernel is any function of the form:

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\psi(\mathbf{x}), \psi\left(\mathbf{x}^{\prime}\right)\right\rangle
$$

where ψ is a function that projections vectors \mathbf{x} into a new vector space. The kernel function computes the inner-product between two projected vectors.

As we prove below, the ψ function for an RBF kernel projects vectors into an infinite dimensional space. For Euclidean vectors, this space is an infinite dimensional Euclidean space.

That is, we prove that

$$
\psi_{\mathrm{RBF}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\infty}
$$

Proof:

Without loss of generality, let $\gamma=\frac{1}{2}$.

$$
\begin{aligned}
K_{\mathrm{RBF}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\exp \left[-\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right] \\
& =\exp \left[-\frac{1}{2}\left\langle\mathbf{x}-\mathbf{x}^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right\rangle\right] \\
& =\exp \left[-\frac{1}{2}\left(\left\langle\mathbf{x}, \mathbf{x}-\mathbf{x}^{\prime}\right\rangle-\left\langle\mathbf{x}^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right\rangle\right)\right] \\
& =\exp \left[-\frac{1}{2}\left(\left\langle\mathbf{x}, \mathbf{x}-\mathbf{x}^{\prime}\right\rangle-\left\langle\mathbf{x}^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right\rangle\right)\right] \\
& =\exp \left[-\frac{1}{2}\left(\langle\mathbf{x}, \mathbf{x}\rangle-\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle-\left\langle\mathbf{x}^{\prime}, \mathbf{x}\right\rangle+\left\langle\mathbf{x}^{\prime}, \mathbf{x}^{\prime}\right\rangle\right)\right] \\
& =\exp \left[-\frac{1}{2}\left(\|\mathbf{x}\|^{2}+\left\|\mathbf{x}^{\prime}\right\|^{2}-2\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle\right)\right] \\
& =\exp \left[-\frac{1}{2}\|\mathbf{x}\|^{2}-\frac{1}{2}\left\|\mathbf{x}^{\prime}\right\|^{2}\right] \exp \left[-\frac{1}{2}-2\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle\right] \\
& =C e^{\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle} \\
& =C \sum_{n=0}^{\infty} \frac{\left.\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle\right\rangle^{n}}{n!} \\
& =C \sum_{n=0}^{\infty} \frac{K_{\text {poly(n) }}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}{n!} \\
& \quad \text { Taylor expansion of } e^{x}:=\exp \left[-\frac{1}{2}\|\mathbf{x}\|^{2}-\frac{1}{2}\left\|\mathbf{x}^{\prime}\right\|^{2}\right] \text { is a constant } \\
&
\end{aligned}
$$

We see that the RBF kernel is formed by taking an infinite sum over polynomial kernels.

As proven previously, recall that the sum of two kernels

$$
K_{c}\left(\mathbf{x}, \mathbf{x}^{\prime}\right):=K_{a}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+K_{b}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

implies that the ψ_{c} function is defined so that it forms vectors of the form

$$
\psi_{c}(\mathbf{x}):=\left(\psi_{a}(\mathbf{x}), \psi_{b}(\mathbf{x})\right)
$$

That is, the vector $\psi_{c}(\mathbf{x})$ is a tuple where the first element of the tuple is the vector $\psi_{a}(\mathbf{x})$ and the second element is $\psi_{b}(\mathbf{x})$. The inner-product on the vector space of ψ_{c} is defined as

$$
\left\langle\psi_{c}(\mathbf{x}), \psi_{c}\left(\mathbf{x}^{\prime}\right)\right\rangle:=\left\langle\psi_{a}(\mathbf{x}), \psi_{a}\left(\mathbf{x}^{\prime}\right)\right\rangle+\left\langle\psi_{b}(\mathbf{x}), \psi_{b}\left(\mathbf{x}^{\prime}\right)\right\rangle
$$

For Euclidean vector spaces, this means that $\psi_{c}(\mathbf{x})$ is the vector formed by appending the elements of $\psi_{b}(\mathbf{x})$ onto the $\psi_{a}(\mathbf{x})$ and that

$$
\begin{aligned}
\left\langle\psi_{c}(\mathbf{x}), \psi_{c}\left(\mathbf{x}^{\prime}\right)\right\rangle: & : \sum_{i}^{\text {dimension }(a)} \psi_{a, i}(\mathbf{x}) \psi_{a, i}\left(\mathbf{x}^{\prime}\right)+\sum_{j}^{\operatorname{dimension}(b)} \psi_{b, j}(\mathbf{x}) \psi_{b, j}\left(\mathbf{x}^{\prime}\right) \\
& =\sum_{i}^{\operatorname{dimension}(a)+\operatorname{dimension}(b)} \psi_{c, i}(\mathbf{x}) \psi_{c, i}\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

Since the RBF is an infinite sum over such appendages of vectors, we see that the projections is into a vector space with infinite dimension.

The γ parameter

Recall a kernel expresses a measure of similarity between vectors. The RBF kernel represents this similarity as a decaying function of the distance between the vectors (i.e. the squared-norm of their distance). That is, if the two vectors are close together then, $\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|$ will be small. Then, so long as $\gamma>0$, it follows that $-\gamma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}$ will be larger. Thus, closer vectors have a larger RBF kernel value than farther vectors. This function is of the form of a bell-shaped curve.

The γ parameter sets the width of the bell-shaped curve. The larger the value of γ the narrower will be the bell. Small values of γ yield wide bells. This is illustrated in Figure 1.

Figure 1: (a) Large γ. (b) Small γ.

