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Deep 
Model

A young boy is flying a kite.
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Image Captioning

Accurate Captioning

A young boy is flying a kite.

…

A kite is flying over the boy.

Diverse Captioning

A young boy is flying a kite. Grounded Captioning

Controllable CaptioningA ship is sailing on the river.



Anderson et al., CVPR 2018 Yao et al., ECCV 2018
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Cornia et al., CVPR 2019Zhou et al., CVPR 2019

Wang et al., NeurIPS 2017

Aneja et al., ICCV 2019



A bike is parked on 
the street.

A cruise ship is sailing 
on the river.

A young boy is flying 
a kite.
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Comprehensive Image Captioning

A young boy is flying 
a kite.

A cruise ship is sailing 
on the river.

A bike is parked on 
the street.

Our Model
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Image Components & Image Scene Graph
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Zellers et al., “Neural Motifs: Scene Graph Parsing with Global Context”, CVPR 2018
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Decomposition 

Sub-graph Selection

Sentence

Generation
A man is driving a boat.
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Key Idea: Captions from Sub-Graphs

• Decomposing scene graph into sub-graphs 

• Selecting a meaningful sub-graph to decode a sentence
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Scene Graph Decomposition

Klusowski et al., “Counting Motifs with Graph 
Sampling”, Machine Learning Research 2018
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Meaningful Sub-graphs: 

The sub-graphs that can be matched to the ground truth captions.

“A person in a blue shirt is driving a boat.”
boat

man

person

shirt

boat

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 Label = 1
> threshold
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Identifying Meaningful Sub-graphs
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Goal: 

Design a binary classifier to identify the meaningful sub-graphs.

Graph

Pooling

Binary

Classifier

MLP Sigmoid

0.9 Label: 1

Binary Cross-Entropy Loss
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Sub-graph Proposal Network (sGPN)
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A man is driving a boat.LSTM
sGPN
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10

Sub-graph Decoding

Attention

LSTM

LSTM

Vt

yt

Pooling

Attention-based LSTM

ht-1

…

yt-1
Anderson et al., “Bottom-Up and Top-Down Attention for Image 
Captioning and Visual Question Answering”, CVPR 2018
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A man is driving a boat.LSTM

Anderson et al., “Bottom-Up and Top-Down Attention for Image 
Captioning and Visual Question Answering”, CVPR 2018
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A man is driving a boat.

Grounded Caption
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A man is driving a boat.

A person sits on a chair.
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Sub-graph Captioning



A man in a suit is walking down the street.
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Qualitative Results

A bus is parked in front of a building.
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Qualitative Results

A man is jumping off a rock in a 
rocky area.
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Top-1 Accuracy (CIDEr)

Diversity and Top-1 Accuracy Results

AG-CVAE
POS

Div-BS

Sub-GC (Ours)

Accuracy Optimized Models

Sub-GC-S (Ours)Seq-CVAE

POS+Joint

Good Balance!

Results - Diverse and Accurate Captioning
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F1 Localization

Grounding Results

UpDown GVD Cyclical Sub-GC (Ours)
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Results - Grounded Captioning

Zhou et al., “Grounded Video Description”, CVPR 2019

Grounding: locate image regions 

associated with sentence tokens

Metric: F1 score for localization
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Controllability Results

NBT SCT Sub-GC (Ours)
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Controllability: decode a target sentence 

given a set of input image regions 

Results - Controllable Captioning

Cornia et al., “Show, Control and Tell: A Framework for Generating Controllable and Grounded Captions”, CVPR 2019

Metric: CIDEr and Word IoU
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Project Page: http://pages.cs.wisc.edu/~yiwuzhong/Sub-GC.html

Code Repo: https://github.com/YiwuZhong/Sub-GC

Conclusion

• We proposed the first comprehensive image captioning model that enables 

accurate, diverse, grounded and controllable captioning at the same time.

• Our model outperforms state-of-the-art results in caption diversity, grounding 

and controllability, and compares favorably to latest methods in caption quality. 

Thank you!

http://pages.cs.wisc.edu/~yiwuzhong/Sub-GC.html
https://github.com/YiwuZhong/Sub-GC

