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— |mage Captioning

A young boy is flying a kite.

A young boy is flying a kite.

A kite is flying over the boy.

A young boy is flying a kite.

A ship is sailing on the river.

Accurate Captioning

Diverse Captioning

Grounded Captioning

Controllable Captioning
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Comprehensive Image Captioning

Our Model

A young boy is flying A cruise ship is sailing A bike is parked on
a kite. on the river. the street.



— |Mage Components & Image Scene Graph
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Zellers et al., “Neural Motifs: Scene Graph Parsing with Global Context”, CVPR 2018



Key Idea: Captions from Sub-Graphs

« Decomposing scene graph into sub-graphs

* Selecting a meaningful sub-graph to decode a sentence
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— Scene Graph Decomposition
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— |dentifying Meaningful Sub-graphs [ﬁm

Meaningful Sub-graphs:

The sub-graphs that can be matched to the ground truth captions.
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— Sub-graph Proposal Network (sGPN)

Goal:

Design a binary classifier to identify the meaningful sub-graphs.
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— SUb-graph Decoding
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Grounded Caption
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—— SUb-graph Captioning

\

sGPN

— 0.2

Scene Graph Detector Sub-graph Sampling

near Sub-graph Extraction ! ‘ A manis driving a boat.

O

(=== —— e —————————
—(

boat A sits on a chair.
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— Qualitative Results
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A bus is parked in front of a building.
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— Qualitative Results
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A man in a orange hat and brown
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rocky
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Results - Diverse and Accurate Captioning m

Diversity and Top-1 Accuracy Results
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Results - Grounded Captioning

Grounding Results
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Zhou et al., “Grounded Video Description”, CVPR 2019
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Results - Controllable Captioning
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Controllability Results
Controllability: decode a target sentence
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Cornia et al., “Show, Control and Tell: A Framework for Generating Controllable and Grounded Captions”, CVPR 2019
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Conclusion

 We proposed the first comprehensive image captioning model that enables

accurate, diverse, grounded and controllable captioning at the same time.

 Our model outperforms state-of-the-art results in caption diversity, grounding

and controllability, and compares favorably to latest methods in caption quality.

Project Page: http://pages.cs.wisc.edu/~viwuzhong/Sub-GC.html
Code Repo: https://github.com/YiwuZhong/Sub-GC

Thank you!
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