Recall the **pumping lemma** for regular languages.

It told us that if there was a string long enough to cause a **cycle** in the DFA for the language, then we could **pump** the cycle and discover an **infinite sequence** of strings that had to be in the language.
Pumping Lemma for CFL’s: Intuition

- For CFL’s the situation is a little more complicated.
- We can always find two pieces of any sufficiently long string to pump in tandem.
- That is, if we repeat each of these two pieces the same number of times, we get another string in the language.
The CFL Pumping Lemma

Theorem
For every CFL L there is an integer n, such that for every string z in L of length $\geq n$, there exists $z = uvwx$ such that:

- $|vwx| \leq n$.
- $|vx| > 0$.
- For all $i \geq 0$, $uv^iwx^i y \in L$.

Proof of the Pumping Lemma

- Start with a CNF grammar for $L - \{\varepsilon\}$.
- Let the grammar have m variables.
- Pick $n = 2^m$.
- Let $|z| \geq n$.
- We claim ("Lemma 1") that a parse tree with yield z must have a path of length $m+2$ or more.
If all the paths in the parse tree of a CNF grammar are of length $\leq m + 1$, then the longest yield has length 2^{m-1}, as in:
• Now we know that the parse tree for \(z \) has a path with at least \(m+1 \) variables.

• Consider some longest path.

• There are only \(m \) different variables, so among the lowest \(m+1 \) we can find two nodes with the same label, say \(A \).

• The parse tree thus looks like:
Proof of the Pumping Lemma
Non-CFL’s typically involve trying to match two pairs of counts or match two strings.

Example: Show that \(L = \{0^i10^i10^i \mid i \geq 1\} \) is not a CFL.

Proof using the pumping lemma.

Suppose \(L \) were a CFL.

Let \(n \) be \(L \)’s pumping length.
- Consider $z = 0^n10^n10^n$.
- We can write $z = uvwxy$, where $|vwx| \leq n$, and $|vx| \geq 1$.
- **Case 1**: vx has no 0’s.
 - Then at least one of them is a 1, and uwy has at most one 1, which no string in L does.
Using the Pumping Lemma

- Still considering $z = 0^n10^n10^n$.
- **Case 2:** vx has at least one 0.
 - vwx is too short (length $\leq n$) to extend to all three blocks of 0’s in $0^n10^n10^n$.
 - Thus, uwy has at least one block of n 0’s, and at least one block with fewer than n 0’s.
 - Thus, uwy is not in L.

Mridul Aanjaneya
Automata Theory
• As usual, when we talk about a CFL we really mean a representation for the CFL, e.g., a CFG or a PDA accepting by final state or empty stack.
• There are algorithms to decide if:
 • String w is in CFL L.
 • CFL L is empty.
 • CFL L is infinite.
Many questions that can be decided for regular sets cannot be decided for CFL’s.

Example: Are two CFL’s the same?

Example: Are two CFL’s disjoint?

- How would you do that for regular languages?

Need theory of Turing Machines and decidability to prove no algorithm exists.
• We already did this.
• We learned to eliminate variables that generate no terminal string.
• If the start symbol is one of these, then the CFL is empty; otherwise not.
• Want to know if string w is in $L(G)$.
• Assume G is in CNF.
 • Or convert the given grammar to CNF.
 • $w = \varepsilon$ is a special case, solved by testing if the start symbol is nullable.
• Algorithm CYK is a good example of dynamic programming and runs in $O(n^3)$, where $n = |w|$.
• Let \(w = a_1a_2 \ldots a_n \).
• We construct an \(n \)-by-\(n \) triangular array of sets of variables.
• \(X_{ij} = \{ \text{variables } A \mid A \Rightarrow^* a_i \ldots a_j \} \).
• Induction on \(j-i+1 \).
 • The length of the derived string.
• Finally, ask if \(S \) is in \(X_{1n} \).
CYK Algorithm

- **Basis:** $X_{ii} = \{A \mid A \rightarrow a_i \text{ is a production}\}$.

- **Induction:** $X_{ij} = \{A \mid \text{there is a production } A \rightarrow BC \text{ and an integer } k, \text{ with } i \leq k < j, \text{ such that } B \text{ is in } X_{ik} \text{ and } C \text{ is in } X_{k+1,j}\}$.
Example: CYK Algorithm

- Grammar: $S \rightarrow AB$, $A \rightarrow BC|a$, $B \rightarrow AC|b$, $C \rightarrow a|b$
- String $w = ababa$.
- $X_{11} = \{A,C\}$, $X_{22} = \{B,C\}$, $X_{33} = \{A,C\}$, $X_{44} = \{B,C\}$, $X_{55} = \{A,C\}$.
- $X_{12} = \{B,S\}$, $X_{23} = \{A\}$, $X_{34} = \{B,S\}$, $X_{45} = \{A\}$.
- $X_{13} = \{A\}$, $X_{24} = \{B,S\}$, $X_{35} = \{A\}$.
- $X_{14} = \{B,S\}$, $X_{25} = \{A\}$.
- $X_{15} = \{A\}$.
Testing Infiniteness

- The idea is essentially the same as for regular languages.
- Use the pumping length n.
- If there is a string in the language of length between n and $2n-1$, then the language is infinite; otherwise not.
Closure Properties of CFL’s

- CFL’s are **closed** under union, concatenation, and Kleene closure.
- Also, under reversal, homomorphisms and **inverse homomorphisms**.
- But **not** under intersection or difference.
Closure of CFL’s under Union

- Let L and M be CFL’s with grammars G and H, respectively.
- Assume G and H have no variables in common.
 - Names of variables do not affect the language.
- Let S_1 and S_2 be the start symbols of G and H.
Closure of CFL’s under Union

- Form a new grammar for $L \cup M$ by combining all the symbols and productions of G and H.
- Then, add a new start symbol S.
- Add the production $S \rightarrow S_1 | S_2$.
• In the new grammar, all derivations start with S.
• The first step replaces S by either S_1 or S_2.
• In the first case, the result must be a string in $L(G) = L$, and in the second case a string in $L(H) = M$.
Closure of CFL’s under Concatenation

- Let L and M be CFL’s with grammars G and H, respectively.
- Assume G and H have no variables in common.
- Let S_1 and S_2 be the start symbols of G and H.
• Form a new grammar for LM by combining all the symbols and productions of G and H.
• Add a new start symbol S.
• Add the production $S \rightarrow S_1S_2$.
• Every derivation from S results in a string in L followed by one in M.
Closure under Star

- Let L have grammar G, with start symbol S_1.
- Form a new grammar for L^* by introducing to G a new start symbol S and the productions $S \rightarrow S_1S \mid \varepsilon$.
- A rightmost derivation from S generates a sequence of zero or more S_1’s, each of which generates some string in L.

Mridul Aanjaneya
If \(L \) is a CFL with a grammar \(G \), form a grammar for \(L^R \) by reversing the right side of every production.

Example: Let \(G \) have \(S \rightarrow 0S1 \mid 01 \).

The reversal of \(L(G) \) has grammar \(S \rightarrow 1S0 \mid 10 \).
Closure of CFL’s under Homomorphisms

- Let L be a CFL with a grammar G.
- Let h be a homomorphism on the terminal symbols of G.
- Construct a grammar for $h(L)$ by replacing each terminal symbol a by $h(a)$.
Example: Closure under Homomorphisms

- G has productions $S \rightarrow 0S1 \mid 01$.
- h is defined by $h(0) = ab$, $h(1) = \varepsilon$.
- $h(L(G))$ has the grammar with productions $S \rightarrow abS \mid ab$.
Closure under Inverse Homomorphisms

- Here, grammars do not help us.
- But a PDA construction serves nicely.
- **Intuition:** Let $L = L(P)$ for some PDA P.
- Construct PDA P' to accept $h^{-1}(L)$.
- P' simulates P, but keeps, as one component of a two-component state a buffer that holds the result of applying h to one input symbol.
Architecture of P'

- Read **first remaining symbol** in buffer as if it were **input** to P.

Input: 0 0 1 1

<h(0)>

Buffers

State of P

Stack of P
States are pairs $[q, b]$, where:

1. q is a state of P.
2. b is a suffix of $h(a)$ for some symbol a.

Thus, only a finite number of possible values for b.

Stack symbols of P' are those of P.

Start state of P' is $[q_0, \varepsilon]$.
Formal Construction of P'

- Input symbols of P' are the symbols to which h applies.
- Final states of P' are the states $[q, \varepsilon]$ such that q is a final state of P.
Transitions of P'

1. $\delta'([q, \varepsilon], a, X) = \{([q, h(a)], X)\}$ for any input symbol a of P' and any stack symbol X.
 - When the buffer is empty, P' can reload it.

2. $\delta'([q, bw], \varepsilon, X)$ contains $([p, w], \alpha)$ if $\delta(q, b, X)$ contains (p, α), where b is either an input symbol of P or ε.
 - Simulate P from the buffer.
Proving Correctness of P'

- We need to show that $L(P') = h^{-1}(L(P))$.
- **Key argument:** P' makes the transition $([q, \varepsilon], w, Z_0) \vdash^* ([q, x], \varepsilon, \alpha)$ if and only if P makes transition $(q_0, y, Z_0) \vdash^* (q, \varepsilon, \alpha)$, $h(w) = yx$, and x is a suffix of the last symbol of w.
- Proof in both directions is an induction on the number of moves made.
 - Left as exercises.
Unlike the regular languages, the class of CFL’s is not closed under intersection.

We know that \(L_1 = \{0^n1^n2^n | n \geq 1\} \) is not a CFL (using the pumping lemma).

However, \(L_2 = \{0^n1^n2^i | n \geq 1, i \geq 1\} \) is.

- CFG: \(S \rightarrow AB, \ A \rightarrow 0A1|01, \ B \rightarrow 2B|2 \).

So is \(L_3 = \{0^i1^n2^n | n \geq 1, i \geq 1\} \).

But \(L_1 = L_2 \cap L_3 \).
We can prove something more general:

- Any class of languages that is closed under difference is closed under intersection.

Proof: $L \cap M = L - (L - M)$.

Thus, if CFL’s were closed under difference, they would be closed under intersection, but they are not.
• Intersection of two CFL’s need not be context-free.
• But the intersection of a CFL with a regular language is always a CFL.
• Proof involves running a DFA in parallel with a PDA, and noting that the combination is a PDA.
 • PDA’s accept by final state.
• Let the DFA A have transition function δ_A.
• Let the PDA P have transition function δ_P.
• States of combined PDA are $[q,p]$, where q is a state of A and p is a state of P.
• $\delta([q,p],a,X)$ contains $([\delta_A(q,a),r],\alpha)$ if $\delta_P(p,a,X)$ contains (r,α).
 - **Note:** a could be ε, in which case $\delta_A(q,a) = q$.
• Accepting states of combined PDA are those \([q,p]\) such that \(q\) is an accepting state of \(A\) and \(p\) is an accepting state of \(P\).

• **Easy induction:** \(([q_0,p_0],w,Z_0) \vdash^* ([q,p],\varepsilon,\alpha)\) if and only if \(\delta_A(q_0,w) = q\) and in \(P\): \((p_0,w,Z_0) \vdash^* (p,\varepsilon,\alpha)\).