Enumerations and Turing Machines

Mridul Aanjaneya

Stanford University

August 07, 2012
Finite Sets

- Intuitively, a \textbf{finite set} is a set for which there is a particular integer that is the \textbf{count} of the number of members.
- \textbf{Example:} \{a, b, c\} is a finite set, its \textbf{cardinality} is 3.
- It is \textbf{impossible} to find a \textbf{1-1 mapping} between a finite set and a \textbf{proper} subset of itself.
Infinite Sets

- Formally, an infinite set is a set for which there is a 1-1 correspondence between itself and a proper subset of itself.
- **Example:** the positive integers $\mathbb{Z} = \{1, 2, 3, \ldots\}$ is an infinite set.
 - There is a 1-1 correspondence between $1 \leftrightarrow 2$, $2 \leftrightarrow 4$, $3 \leftrightarrow 6$, \ldots between this set and a proper subset (the set of even integers).
A countable set is a set with a 1-1 correspondence with the positive integers \mathbb{Z}^+. Hence, all countable sets are infinite.

Example: All integers.

$0 \leftrightarrow 1, -i \leftrightarrow 2i, +i \leftrightarrow 2i + 1$.

Thus, order is $0, -1, 1, -2, 2, -3, 3, \ldots$
Enumerations

- An enumeration of a set if a 1-1 correspondence between the set and the positive integers \mathbb{Z}^+.
• Are the languages over \(\{0,1\}^* \) countable?
• No, here’s a proof.
• Suppose we could enumerate all languages over \(\{0,1\}^* \) and talk about the \(i \)th language.
• Consider the language \(L = \{w \mid w \text{ is the } i \text{th binary string and } w \text{ is not in the } i \text{th language}\} \).
Proof

- Clearly, L is a language over $\{0,1\}^*$.
- Thus, it is the jth language for some particular j.
- Let x be the jth string.
- Is x in L?
 - If so, x is not in L (by definition).
 - If not, then x is in L (by definition).
- We have a contradiction: x is neither in L nor not in L, so our sole assumption (that there was an enumeration of the languages) is wrong.
The purpose of the theory of Turing Machines is to prove that certain specific languages have no algorithm.

Start with a language about Turing Machines themselves.

Reductions are used to prove more common questions undecidable.
Picture of a Turing Machine
Why not deal with C programs or something like that?

Answer: You can, but it is easier to prove things about TM’s, because they are so simple.

- And yet they are as powerful as any computer.
- More so, in fact, since they have infinite memory.
Then why not FSM’s to model computers?

- In principle, you could, but it is not instructive.
- Programming models don’t build in a limit on memory.
- In practice, you can do to Fry’s and buy another disk.
- But finite automata vital at the chip level (model-checking).
A TM is described by:

1. A finite set of states \((Q, \text{ typically})\).
2. An input alphabet \((\Sigma, \text{ typically})\).
3. A tape alphabet \((\Gamma, \text{ typically})\).
4. A transition function \((\delta, \text{ typically})\).
5. A start state \((q_0, \text{ in } Q, \text{ typically})\).
6. A blank symbol \((B, \text{ in } \Gamma - \Sigma, \text{ typically})\).
 - All tape except for the input is blank initially.
7. A set of final states \((F \subseteq Q, \text{ typically})\).
Conventions

- a, b, \ldots are input symbols.
- \ldots, X, Y, Z are tape symbols.
- \ldots, w, x, y, z are strings of input symbols.
- α, β, \ldots are strings of tape symbols.
The Transition Function

- Takes two arguments:
 1. A state in Q.
 2. A tape symbol in Γ.

- $\delta(q,Z)$ is either undefined or a triple of the form (p,Y,D).
 - p is a state.
 - Y is the new tape symbol.
 - D is a direction, L or R.

Mridul Aanjaneya

Automata Theory

14/35
If $\delta(q, Z) = (p, Y, D)$ then, in state q, scanning Z under its tape head, the TM:

- Changes the state to p.
- Replaces Z by Y on the tape.
- Moves the head one square in direction D.
- $D = L$: move left, $D = R$: move right.
Example: Turing Machine

- This TM scans its input right, looking for a 1.
- If it finds one, it changes it to a 0, goes to final state f, and halts.
- If it reaches a blank, it changes it to a 1 and moves left.
Example: Turing Machine

- States = \{q, f\}.
- Input symbols = \{0, 1\}.
- Tape symbols = \{0, 1, B\}.
- \(\delta(q,0) = (q,0,R)\).
- \(\delta(q,1) = (f,0,R)\).
- \(\delta(q,B) = (q,1,L)\).
Example: Turing Machine

- $\delta(q,0) = (q,0,R)$.

![Turing Machine Diagram]
Example: Turing Machine

- \(\delta(q,0) = (q,0,R) \).
Example: Turing Machine

- $\delta(q,0) = (q,0,R)$.
$\delta(q,B) = (q,1,L)$.

- Example: Turing Machine

```
   B B B 0 0 B B

   q

   B B B 0 0 B B
```
Example: Turing Machine

\[\delta(q,0) = (q,0,R). \]
Example: Turing Machine

- \(\delta(q, 1) = (f, 0, R) \).
Example: Turing Machine

- \(\delta(q, 1) = (f, 0, R) \).
• Initially, a TM has a tape consisting of a string of input symbols surrounded by an infinity of blanks in both directions.
• The TM is in the start state, and the head is at the leftmost input symbol.
Instantaneous Descriptions of a Turing Machine

- An ID is a string $\alpha q \beta$, where $\alpha \beta$ is the tape between the leftmost and rightmost nonblanks (inclusive).
- The state q is immediately to the left of the tape symbol scanned.
- If q is at the right end, it is scanning B.
 - If q is scanning a B at the left end, then consecutive B’s at and to the right of q are part of α.
• As for PDA’s we may use symbols \(\vdash \) and \(\vdash^* \) to represent becomes in one move and becomes in zero or more moves, respectively, on ID’s.

• **Example:** The moves of the previous TM are \(q00 \vdash 0q0 \vdash 00q \vdash 0q01 \vdash 00q1 \vdash 000f \).
Formal Definition of Moves

1. If $\delta(q, Z) = (p, Y, R)$, then
 - $\alpha q Z \beta \vdash \alpha Y p \beta$
 - If Z is the blank B, then also $\alpha q \vdash \alpha Y p$

2. If $\delta(q, Z) = (p, Y, L)$, then
 - For any X, $\alpha X q Z \beta \vdash \alpha p X Y \beta$
 - In addition, $q Z \beta \vdash p B Y \beta$
Languages of a TM

- A TM defines a language by final state as usual.
 \[L(M) = \{ w \mid q_0w \vdash^* I, \text{ where } I \text{ is an ID with a final state} \} \]

- Or, a TM can accept a language by \textbf{halting}.
 \[H(M) = \{ w \mid q_0w \vdash^* I, \text{ and there is no move from ID } I \} \]
1. If $L = L(M)$, then there is a TM M' such that $L = H(M')$.
2. If $L = H(M')$, then there is a TM M'' such that $L = L(M'')$.
Acceptance → Halting

- Modify M to become M' as follows:
 1. For each accepting state of M, remove any moves, so M' halts in that state.
 2. Avoid having M' accidentally halt.
 3. Introduce a new state s, which runs to the right forever, i.e., $\delta(s, X) = (s, X, R)$ for all symbols X.
 4. If q is not accepting, and $\delta(q, X)$ is undefined, let $\delta(q, X) = (s, X, R)$.
• Modify M to become M'' as follows:
 1. Introduce a new state f, the only accepting state of M''.
 2. f has no moves.
 3. If $\delta(q,X)$ is undefined for any state q and symbol X, define it by $\delta(q,X) = (f,X,R)$.
We now see that the classes of languages defined by TM’s using final state and halting are the same.
This class of languages is called the recursively enumerable languages.
Why? The term actually predates the Turing Machine and refers to another notion of computation of functions.
• An algorithm is a TM that is guaranteed to halt whether or not it accepts.

• If \(L = L(M) \) for some TM \(M \) that is an algorithm, we say \(L \) is a recursive language.
 - Why? Again, don’t ask. It is a term with a history.
Example: Recursive Languages

- Every CFL is a recursive language.
 - Use the CYK algorithm.
- Every regular language is a CFL (think of its DFA as a PDA that ignores its stack); therefore every regular language is recursive.
- Almost anything you can think of is recursive.