Regular Expressions and Language Properties

Mridul Aanjaneya

Stanford University

July 3, 2012
Tentative Schedule

- HW #1: Out (07/03), Due (07/11)
- HW #2: Out (07/10), Due (07/18)
- HW #3: Out (07/17), Due (07/25)
- Midterm: 07/31
- HW #4: Out (07/31), Due (08/08)
- Tentative grades out by 08/12.
- Final: ?
Epsilon Transitions: Extended transition function

- **Basis:** $\delta_E(q, \varepsilon) = \text{CL}(q)$.

- **Induction:** $\delta_E(q, xa)$ is computed as follows:
 1. Start with $\delta_E(q, x) = S$.
 2. Take the union of $\text{CL}(\delta(p, a))$ for all p in S.

- **Intuition:** $\delta_E(q, w)$ is the set of states you can reach from q following a path labeled w with ε’s in between.
Equivalence of NFA, ε-NFA

- Compute $\delta_N(q,a)$ as follows:
 - Let $S = \text{CL}(q)$.
 - $\delta_N(q,a)$ is the union over all p in S of $\delta_E(p,a)$.
- $F' = \text{set of states } q \text{ such that } \text{CL}(q) \text{ contains a state of } F$.
- **Intuition:** δ_N incorporates ε-transitions before using a.
- Proof of equivalence is by induction on $|w|$ that $\text{CL}(\delta_N(q_0,w)) = \delta_E(q_0,w)$.
- **Basis:** $\text{CL}(\delta_N(q_0,\varepsilon)) = \text{CL}(q_0) = \delta_E(q_0,\varepsilon)$.
- **Inductive step:** Assume IH is true for all x shorter than w. Let $w = xa$.
 - Then $\text{CL}(\delta_N(q_0,xa)) = \text{CL}(\delta_E(\text{CL}(\delta_N(q_0,x)),a))$ (by definition).
 - But from IH, $\text{CL}(\delta_N(q_0,x)) = \delta_E(q_0,x)$.
 - Hence, $\text{CL}(\delta_N(q_0,w)) = \text{CL}(\delta_E(\delta_E(q_0,x),a)) = \delta_E(q_0,w)$.
Example
DFA’s, NFA’s and ε-NFA’s all accept exactly the same set of languages: the regular languages.

NFA types are easier to design and may have exponentially fewer states than a DFA.

But only a DFA can be implemented!
Question
Are such tilings always possible?
Question

How many regions can you cut?
We define three regular operations on languages.

Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as follows.

- **Union:** $A \cup B = \{ x | x \in A \text{ or } x \in B \}$.
- **Concatenation:** $A \circ B = \{ xy | x \in A \text{ and } y \in B \}$.
- **Star:** $A^* = \{ x_1x_2 \ldots x_k | k \geq 0 \text{ and each } x_i \in A \}$.

Kleene Closure

Denoted as A^* and defined as the set of strings $x_1x_2 \ldots x_n$, for some $n \geq 0$, where each x_i is in A.

- **Note:** When $n = 0$, the string is ε.

Mridul Aanjaneya
Automata Theory
9/ 47
Example

- Let $\Sigma = \{a, b, \ldots, z\}$. If $A = \{\text{good}, \text{bad}\}$ and $B = \{\text{boy}, \text{girl}\}$,
- $A \cup B = \{\text{good}, \text{bad}, \text{boy}, \text{girl}\}$,
- $A \circ B = \{\text{goodboy}, \text{goodgirl}, \text{badboy}, \text{badgirl}\}$,
- $A^* = \{\varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad}, \ldots\}$,
Theorem

The class of regular languages is closed under the union operation, i.e., if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
The class of regular languages is closed under concatenation.
The class of regular languages is closed under the star operation.
• Regular expressions describe languages algebraically.
• They describe exactly the regular languages.
• If E is a regular expression, then $L(E)$ is its language.
• We give a recursive definition of RE’s and their languages.
Basis: If a is any symbol, then a is a RE, and $L(a) = \{a\}$.

- **Note:** $\{a\}$ is the language containing one string, and that string is of length 1.

Basis: ε is a RE, and $L(\varepsilon) = \{\varepsilon\}$.

Basis: \emptyset is a RE, and $L(\emptyset) = \emptyset$.

Induction: If E_1 and E_2 are regular expressions, then $E_1 + E_2$ is a regular expression, and $L(E_1 + E_2) = L(E_1) \cup L(E_2)$.

Induction: If E_1 and E_2 are regular expressions, then $E_1 E_2$ is a regular expression, and $L(E_1 E_2) = L(E_1) L(E_2)$.

Induction: If E is a regular expression, then E^* is a regular expression, and $L(E^*) = (L(E))^*$.
Precedence of operators

- Parentheses may be used wherever needed to influence the grouping of operators.
- Order of precedence is * (highest), then concatenation, then + (lowest).
Examples

- \(L(01) = \{01\} \).
- \(L(01+0) = \{01,0\} \).
- \(L(0(1+0)) = \{01,00\} \).
 - **Note:** order of precedence.
- \(L(0^*) = \{\varepsilon,0,00,000,\ldots\} \)
- \(L((0+10)^*(\varepsilon+1)) = \) all strings over \(\{0,1\}\) without 11’s.
Union and concatenation behave sort of like addition and multiplication.

$+$ is commutative and associative.

Concatenation is associative.

Concatenation distributes over $+$.

Exception: concatenation is not commutative.
Identities and Annihilators

- \emptyset is the identity for +.
 - \(R + \emptyset = R \).
- \(\varepsilon \) is the identity for concatenation.
 - \(\varepsilon R = R\varepsilon = R \)
- \emptyset is the annihilator for concatenation.
 - \(\emptyset R = R\emptyset = \emptyset \).
• We need to show that for every regular expression, there is an automaton that accepts the same language.
 • Pick the most powerful automaton type: ε-NFA.
• And we need to show that for every automaton, there is a regular expression defining its language.
 • Pick the most restrictive type: the DFA.
Converting a RE to an ε-NFA

- Proof is an \textit{induction} on the number of operators (+, concatenation, \textit{*}) in the regular expression.
- We always construct an automaton of a \textit{special} form (next slide).
RE to ε-NFA: Basis

- Symbol a:
 ![Diagram for symbol a]

- ε:
 ![Diagram for epsilon]

- \emptyset:
 ![Diagram for empty set]
For $E_1 \cup E_2$
For E_1E_2
For E^*
A strange sort of induction.

States of the DFA are assumed to be 1, 2, \ldots, n.

We construct RE’s for the labels of restricted sets of paths.

- **Basis**: single arcs or no arcs at all.
- **Induction**: paths that are allowed to traverse next state in order.
A *k-path* is a path through the DFA that goes through no state numbered *higher* than *k*.

End-points are *not* restricted, they can be any state.
- 0-paths from 2 to 3: RE for labels = 0
- 1-paths from 2 to 3: RE for labels = 0+1
- 2-paths from 2 to 3: RE for labels = (10)*0+1(01)*1
- 3-paths from 2 to 3: RE for labels = ??
Let R_{ij}^k be the RE for the set of labels of k-paths from state i to state j.

Basis: $k = 0$. $R_{ij}^0 = \text{sum of labels of arcs from } i \text{ to } j$.

- \emptyset is no such arc.
- But add ε if $i = j$.

Example: $R_{12}^0 = 0$, $R_{11}^0 = \emptyset + \varepsilon = \varepsilon$.
A k-path from i to j either:

1. Never goes through state k, or
2. Goes through state k one or more times.

$$R^k_{ij} = R^{k-1}_{ij} + R^{k-1}_{ik}(R^{k-1}_{kk})^* R^{k-1}_{kj}$$

The equivalent RE is the sum (union) of R^n_{ij}, where:

1. n is the number of states, i.e., the paths are unconstrained.
2. i is the start state.
3. j is one of the final states.
Summary

- Each of the three types of automata (DFA, NFA, ε-NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.
Challenge Problem

Question
Can you find the shortest path from A to B?
Properties of Language Classes

• A language class is a set of languages.
 • We have seen one example: the regular languages.
 • We’ll see many more in the class.

• Language classes have two important kinds of properties:
 1. Decision properties
 2. Closure properties
• Representations can be formal or informal.
• Example (formal): represent a language by a DFA or RE defining it.
• Example (informal): a logical or prose statement about its strings:
 • \(\{0^n1^n | n \text{ is a nonnegative integer}\} \)
 • The set of strings consisting of some number of 0’s followed by the same number of 1’s.
A decision property for a class of languages is an algorithm that takes a formal description of a language (e.g., a DFA) and tells whether or not some property holds.

Example: Is language L empty?
• You might imagine that the language is described informally, so if my description is the empty language then yes, otherwise no.

• But the representation is a DFA (or a RE that you will convert to a DFA).

• Can you tell if \(L(A) = \emptyset \) for a DFA \(A \)?
Why Decision Properties?

- Remember that DFA’s can represent protocols, and good protocols are related to the language of the DFA.

 Example: Does the protocol **terminate**? = Is the language finite?

 Example: Can the protocol **fail**? = Is the language nonempty?

- We might want a **smallest** representation for a language, e.g., a minimum-state DFA or a shortest RE.

- If you can’t decide “Are these two languages the **same**?”, i.e., do two DFA’s define the **same** language - you can’t find a “**smallest**”!
A closure property of a language class says that given languages in the class, an operator (e.g., union) produces another language in the same class.

Example: We saw that regular languages are closed under union, concatenation and Kleene closure (star) operations.
Why Closure Properties?

- Helps construct representations.
- Helps show (informally described) languages not to be in the class.
The Membership Question

• Our first decision property is the question: “is the string \(w \) in regular language \(L \)?”

• Assume \(L \) is represented by a DFA \(A \).

• Simulate the action of \(A \) on the sequence of input symbols forming \(w \).

Question

What if \(L \) is not represented by a DFA?

• Use the circle of conversions:

\[
\text{RE} \rightarrow \varepsilon\text{-NFA} \rightarrow \text{NFA} \rightarrow \text{DFA} \rightarrow \text{RE}
\]
The Emptiness Problem

Question
Does a regular language L contain any string at all?

- Assume representation is a DFA.
- Compute the set of states reachable from the start state.
- If any final state is reachable, then yes, else no.
The Infiniteness Problem

Question

Is a given regular language L infinite?

- Start with a DFA for the language.
- **Key idea:** If the DFA has n states, and the language contains any string of length n or more, then the language is infinite.
- Otherwise, the language is surely finite.
 - Limited to strings of length n or less.
Proof of Key Idea

- If an n-state DFA accepts a string w of length n or more, then there must be a state that appears twice on the path labeled w from the start state to a final state.
 - **Note:** Pigeonhole principle!

- Because there are at least $n + 1$ states along the path.

- Since y is not ε, we see an infinite number of strings in L of the form $x y^i z$ for all $i \geq 0$.
The Infiniteness Problem

- We do not have an algorithm yet.
- There are an infinite number of strings of length $\geq n$, and we can’t test them all!
- **Second Key Idea:** If there is a string of length $\geq n$, then there is a string of length between n and $2n - 1$.
Proof of Second Key Idea

- Remember:

- We can choose y to be the first cycle on the path.
- So $|xy| \leq n$; in particular, $1 \leq |y| \leq n$.
- Thus, if w is of length $2n$ or more, there is a shorter string in L that is still of length at least n.
- Keep shortening to reach $[n, 2n - 1]$.
Completion of Infiniteness Algorithm

- Test for membership all strings of length between \([n, 2n - 1]\).
 - If any are accepted, then infinite, else finite.
- A terrible algorithm!
- **Better:** find cycles between the start state and a final state.
- For finding cycles:
 1. Eliminate states not reachable from the start state.
 2. Eliminate states that do not reach a final state.
 3. Test if the remaining transition graph has any cycles.