The Pumping Lemma and Closure Properties

Mridul Aanjaneya

Stanford University

July 5, 2012
Tentative Schedule

- HW #1: Out (07/03), Due (07/11)
- HW #2: Out (07/10), Due (07/18)
- HW #3: Out (07/17), Due (07/25)
- Midterm: 07/31 (in class)
- HW #4: Out (07/31), Due (08/08)
- Tentative grades out by 08/12.
- Final: 08/18 (?)
The Infiniteness Problem

Question
Is a given regular language L infinite?

- Start with a DFA for the language.
- **Key idea:** If the DFA has n states, and the language contains any string of length n or more, then the language is infinite.
- Otherwise, the language is surely finite.
 - **Limited** to strings of length n or less.
Proof of Key Idea

- If an \(n \)-state DFA accepts a string \(w \) of length \(n \) or more, then there must be a state that appears twice on the path labeled \(w \) from the start state to a final state.
 - **Note:** Pigeonhole principle! 😊
- Because there are at least \(n + 1 \) states along the path.

Since \(y \) is not \(\varepsilon \), we see an infinite number of strings in \(L \) of the form \(xy^i z \) for all \(i \geq 0 \).
The Pumping Lemma

For every regular language \(L \), there is an integer \(n \) such that for every string \(w \in L \) of length \(\geq n \), we can write \(w = xyz \) such that:

- \(|xy| \leq n \).
- \(|y| > 0 \).
- For all \(i \geq 0 \), \(xy^i z \) is in \(L \).
The Pumping Lemma: Examples

Question
Prove that the language $L = \{0^k1^k \mid k \geq 1\}$ is not regular.

• Proof by contradiction. Suppose it were, and let a DFA with n states accept all strings in L.
• Choose the string $w = 0^n1^n$. We can write $w = xyz$ where x and y consist of 0’s, and $y \neq \varepsilon$.
• But then $xyyz$ would be in L, and this string has more 0’s than 1’s!
• Choice of the proper string is very important!
 • Example: $w = (01)^n$ does not work!
• Same argument as above also works for $L = \{w \mid w \text{ has equal number of 0’s and 1’s}\}$
The Pumping Lemma: Examples

Question

Prove that the language \(L = \{ww \mid w \in \{0,1\}^*\} \) is not regular.
The Pumping Lemma: Examples

Question

Prove that the language $L = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

- Suppose it were, and let a DFA with n states accept all strings in L.
- Choose the string $w = 0^n10^n1$. We can write $w = xyz$ where x and y consist of 0’s, and $y \neq \epsilon$.
- But then $xyyz$ would be in L!
- Note that the string $w = 0^n0^n$ does not work.
Question

Prove that the language $L = \{1^{k^2} \mid k \geq 0\}$ is not regular.
Question

Prove that the language $L = \{1^{k^2} \mid k \geq 0\}$ is not regular.

- Suppose it were, and let a DFA with n states accept all strings in L.
- Choose the string $w = 1^{n^2}$. We can write $w = xyz$. Consider the string $s = xyyz$.
- We know that $|xy| \leq n$ and thus $|y| \leq n$. So no. of 1’s in $xyyz$ is $n^2 + n < n^2 + 2n + 1$!
- The parameter n is often called the pumping length.
The Pumping Lemma: Examples

Question

Prove that the language $L = \{0^i1^j \mid i > j\}$ is not regular.
The Pumping Lemma: Examples

• Sometimes pumping down is useful as well!

Question

Prove that the language \(L = \{0^i1^j | i > j\} \) is not regular.

• Let \(n \) be the pumping length, i.e., suppose there exists a DFA with \(n \) states that accepts all strings in \(L \).
• Choose the string \(w = 0^{n+1}1^n \). We can write \(w = xyz \) where \(x \) and \(y \) consist of 0’s, and \(y \neq \epsilon \).
• The pumping lemma states that all strings \(xy^iz \in L \), even for \(i = 0 \)!
• The string \(w = xz \) cannot have more 0’s than 1’s.
The Pumping Lemma: Examples

Question
Prove that the language \(L = \{ 1^p \mid \text{where } p \text{ is prime} \} \) is not regular.
The Pumping Lemma: Examples

Question

Prove that the language \(L = \{1^p \mid \text{where } p \text{ is prime} \} \) is not regular.

- Consider some prime \(q \geq n + 2 \), where \(n \) is the pumping length.
- Choose the string \(w = 1^q \). We can write \(w = xyz \) such that \(y \neq \varepsilon \) and \(|xy| \leq n \).
- Let \(|y| = m \). Then \(|xz| = q - m \). Consider the string \(s = xy^{q-m}z \) which is in \(L \) by the pumping lemma.
- \(|xy^{q-m}z| = |xz| + (q-m)|y| = q-m + (q-m)m = (m+1)(q-m) \).
- Note that \(m+1 > 1 \), as \(y \neq \varepsilon \).
- Also note that \(q \geq n + 2 \), and so \(q - m > 1 \).
A closure property of a language class says that given languages in the class, an operator (e.g., union) produces another language in the same class.

Example: We saw that regular languages are closed under union, concatenation and Kleene closure (star) operations.

We will see more examples: intersection, difference, reversal, homomorphism, inverse homomorphism.
Closure Properties: Intersection

- Construct the **product DFA** from DFA’s for \(L \) and \(M \).
- Let these DFA’s have sets of states \(Q \) and \(R \) respectively.
- Product DFA has set of states \(Q \times R \).
 - i.e., pairs \([q, r]\) with \(q \in Q \) and \(r \in Q \).
- Start state = \([q_0, r_0]\) (the start states of the DFA for \(L \) and \(M \)).
- **Transitions:** \(\delta([q, r], a) = [\delta_L(q, a), \delta_M(r, a)] \).
 - \(\delta_L, \delta_M \) are the transition functions for the DFA’s of \(L \) and \(M \).
 - i.e., we simulate the two DFA’s in the two state components of the product DFA.
- Make final states be pairs consisting of final states of both DFA’s of \(L \) and \(M \).
Product DFA: Example

- States: A, B, C, D
- Transitions:
 - A: 0 → B, 1 → B
 - B: 0,1 → B, 1 → C
 - C: 0 → D, 1 → D
 - D: 0 → D, 1 → D

States [A,C], [B,C], [B,D], [A,D] are also shown with their transitions.
Closure Properties: Difference

- If L and M are regular, then so is $L - M = \text{strings in } L \text{ but not in } M$.
- **Proof:** Let A and B be DFA’s whose languages are L and M.
- Construct the product DFA C of A and B.
- Make the final states of C be the pairs where A-state is final but B-state is not.
Closure Properties: Containment

- If L and M are regular, then so is $L - M = \text{strings in } L \text{ but not in } M$.
- **Proof:** Let A and B be DFA’s whose languages are L and M.
- Construct the product DFA C of A and B.
- Make the final states of C be the pairs where A-state is final but B-state is not.
- **Note:** Can also be used to test containment.
 - If $L - M = \emptyset$, then $L \subseteq M$.
 - How did we test if the language of a DFA is empty?
Closure Properties: Complement

- The complement of a language L is $\Sigma^* - L$.
- Since Σ^* is regular, the complement is always regular.
• Given language L, L^R has all strings whose reversal is in L.

• **Example:** $L = \{0, 01, 100\}$;
 $L^R = \{0, 10, 001\}$

• **Proof:** Let E be a regular expression for L.

• We show how to reverse E, to provide a regular expression E^R for L^R.
• **Basis:** If E is a symbol a, ε, or \emptyset, then $E^R = E$.

• **Induction:** If E is:
 - $F + G$, then $E^R = F^R + G^R$
 - FG, then $E^R = G^R F^R$
 - F^*, then $E^R = (F^R)^*$
Let $E = 01^* + 10^*$.

\[
E^R = (01^* + 10^*)^R \\
= (01^*)^R + (10^*)^R \\
= (1^*0^R + 0^*_1^R) \\
= (1^R)^0 + (0^R)^1 \\
= (1^*0 + (0^*)1
\]
A homomorphism on an alphabet is a function that gives a string for each symbol in that alphabet.

Example: \(h(0) = ab, \ h(1) = \varepsilon. \)

Extend to strings by \(h(a_1a_2\ldots a_n) = h(a_1)h(a_2)\ldots h(a_n). \)

Example: \(h(01010) = ababab. \)
• If L is regular, and h is a homomorphism on its alphabet, then $h(L) = \{ h(w) \mid w \in L \}$ is also regular.

• **Proof:** Let E be a regular expression for L.
• Apply h to each symbol in E.
• Language of resulting RE is $h(L)$.
• Let $h(0) = ab$, $h(1) = \varepsilon$.
• Let L be the language of a regular expression $01^* + 10^*$.
• Then $h(L)$ is the language of regular expression $ab\varepsilon^* + \varepsilon(ab)^*$.
• **Note:** $ab\varepsilon^* + \varepsilon(ab)^* = ab + (ab)^* = (ab)^*$.

Mridul Aanjaneya
Automata Theory 27/ 27