1. [40%] Prove the following properties:
 (a) Show that for any vector $x \in \mathbb{R}^n$, the following inequalities hold:
 \[
 ||x||_\infty \leq ||x||_1 \leq n ||x||_\infty \\
 ||x||_\infty \leq ||x||_2 \leq \sqrt{n} ||x||_\infty
 \]
 (b) Assume that positive constants c_1, c_2 exist, such that for any $x \in \mathbb{R}^n$
 \[
 c_1 ||x||_a \leq ||x||_b \leq c_2 ||x||_a
 \]
 Here, $|| \cdot ||_a$ and $|| \cdot ||_b$ are simply two different vector norms. Show that in this case, we can also find positive constants d_1, d_2 such that
 \[
 d_1 ||M||_a \leq ||M||_b \leq d_2 ||M||_a
 \]
 for any matrix $M \in \mathbb{R}^{n \times n}$. The norms in the last expression are the matrix norms induced from the respective vector norms.

2. [20%] Let
 \[
 A = \begin{bmatrix}
 1 & 1 + \varepsilon \\
 1 - \varepsilon & 1
 \end{bmatrix}
 \]
 (a) What is the determinant of A?
 (b) In single-precision arithmetic, for what range of values of ε will the computed value of the determinant be zero?
 (c) What is the LU factorization of A?
 (d) In single-precision arithmetic, for what range of values of ε will the computed value of U be singular?
3. [20%] Prove the following, where A, U, V are $n \times n$ matrices and u, v are $n \times 1$ vectors:

(a) The Sherman-Morrison formula:

$$(A - uv^T)^{-1} = A^{-1} + A^{-1}u(1 - v^TA^{-1}u)^{-1}v^TA^{-1}$$

Hint: Multiply both sides by $(A - uv^T)$.

(b) The Woodbury formula:

$$(A - UV^T)^{-1} = A^{-1} + A^{-1}U(I - V^TA^{-1}U)^{-1}V^TA^{-1}$$

Hint: Multiply both sides by $(A - UV^T)$.

4. [40%] Prove the following two statements:

(a) The product of two lower triangular matrices is lower triangular.

(b) The inverse of a nonsingular lower triangular matrix is lower triangular.