
CS412: Lecture #11

Mridul Aanjaneya

February 24, 2015

We saw three methods for polynomial interpolation (Vandermonde, La-
grange, Newton). It is important to understand that all three methods com-
pute (in theory) the same exact interpolant Pn(x), just following different paths
which may be better or worse from a computational perspective. The question
however remains:

• How accurate is this interpolation, or in other words,

• How close is Pn(x) to the “real” function f(x)?

Example:

(x0, y0) = (0, 0)

(x1, y1) = (1, 1)
...

(xn, yn) = (n, n)

1

Using Lagrange polynomials Pn(x) (= x) is written as

f(x) =

n∑
i=0

yili(x)

Let us “shift” yn by a small amount δ. The new value is y?n = yn + δ. The
updated interpolant P?

n(x) then becomes:

P?
n(x) =

n−1∑
i=0

yili(x) + y?nln(x)

Thus, P?
n(x) − Pn(x) = δ · ln(x). Note that ln is a function that “oscillates”

through zero several times:

ln(x)

x0 x1 x2 xn−1 xn

2

Thus, P?
n(x) looks like

P?
n(x) y?n

yn

δ

What we observe is that a local change in y-values caused a global (and
drastic) change in Pn(x). Perhaps the “real” function f would have exhibited
a more graceful and localized change, e.g.:

f?(x)

3

We will use the following theorem to compare the “real” function f being
sampled, and the reconstructed interpolant Pn(x).

Theorem 1. Let

• x0 < x1 < . . . < xn−1 < xn

• yn = f(xn), k = 0, 1, . . . , n, where f is a function which is n-times differ-
entiable with continuous derivatives

• Pn(x) is a polynomial that interpolates (x0, y0), (x1, y1) . . . , (xn, yn)

then for any x ∈ (x0, xn), there exists a θ = θ(x) ∈ (x0, xn) such that

f(x)− Pn(x) =
f (n+1)(θ)

(n+ 1)!
(x− x0)(x− x1) . . . (x− xn)

This theorem may be difficult to apply directly since:

• θ is not known

• θ changes with x

• The (n+ 1)-th derivative f (n+1)(x) may not be fully known.

However, we can use it to derive a conservative bound:

Theorem 2. If M = maxx∈[x0,xn] |f (n+1)(x)| and h = max0≤i≤n |xi+1 − xi|,
then

|f(x)− Pn(x)| ≤ Mhn+1

4(n+ 1)

for all x ∈ [x0, xn].

How good is this, especially when we keep adding more and more data
points (e.g., n→∞ and h→ 0), really depends on the higher order derivatives
of f(x). For example, f(x) = sin(x), x ∈ [0, 2π], alll derivatives of f are ± sin(x)
or ± cos(x). Thus, |f (k)(x)| ≤ 1 for any k. In this case, M = 1, and as we add
more (and denser) data points, we have

|f(x)− Pn(x)| ≤ Mhn+1

4(n+ 1)

n→∞−−−−→
h→0

0

For some functions, however, the values of |f (k)(x)| grow vastly as k →∞ (i.e.,
when we introduce additional points). For example,

f(x) =
1

x
, x ∈ (0.5, 1)⇒ |f (n)(x)| = n!

1

xn+1
,M = max

x∈(0.5,1)
|f (n)(x)| = n!2n+1

In this case, as n→∞:

Mhn

4n
=
n!2n+1hn

4n

n→∞−−−−→∞

Another commonly cited example is Runge’s function:

4

f(x) f(x) = 1
1+25x2

−1 0 1

Approximation with a degree-5 polynomial:

P5(x)

−1 0 1

5

Approximation with a degree-10 polynomial:

P10(x)

−1 0 1

Thus, in this case, the polynomial Pk(x) do not uniformly converge to f(x)
as we add more points.

A possible improvement stems from the following idea:

f(x)− Pn(x) =
f (n+1)(θ)

(n+ 1)!︸ ︷︷ ︸
this can be arbitrary

(x− x0) . . . (x− xn)︸ ︷︷ ︸
select points to minimize this product

The value of the product (x− x0) . . . (x− xn) is minimized by selecting the xi’s
as the Chebyshev points. If the interpolation interval is [a, b], the Chebyshev
points are given by:

xi =
a+ b

2
+
a− b

2
cos

(
iπ

n

)
, i = 0, 1, 2, . . . , n

Graphically, these points are the projections on the x-axis of the n + 1 points
located along the half circle with diameter the interval [a, b] at equal arc-lengths:

6

a
x0 x1 x2 x3 x4 x5 x6

b

Now, we can re-try Runge’s function using Chebyshev points:

−1 0 1

In fact, it is possible to show that using Chebyshev points, we can guarantee
that

|f(x)− Pn(x)| n→∞−−−−→ 0

provided that over [a, b] both f(x) and its derivative f ′(x) remain bounded
(the benefit is that this condition does not place restrictions on higher-order
derivatives of f(x)).

7

