CS412: Lecture #11

Mridul Aanjaneya

February 24, 2015

We saw three methods for polynomial interpolation (Vandermonde, Lagrange, Newton). It is important to understand that all three methods compute (in theory) the same exact interpolant $\mathcal{P}_n(x)$, just following different paths which may be better or worse from a computational perspective. The question however remains:

- How accurate is this interpolation, or in other words,
- How close is $\mathcal{P}_n(x)$ to the "real" function f(x)?

Example:

Using Lagrange polynomials $\mathcal{P}_n(x)$ (= x) is written as

$$f(x) = \sum_{i=0}^{n} y_i l_i(x)$$

Let us "shift" y_n by a small amount δ . The new value is $y_n^* = y_n + \delta$. The updated interpolant $\mathcal{P}_n^*(x)$ then becomes:

$$\mathcal{P}_n^{\star}(x) = \sum_{i=0}^{n-1} y_i l_i(x) + y_n^{\star} l_n(x)$$

Thus, $\mathcal{P}_n^{\star}(x) - \mathcal{P}_n(x) = \delta \cdot l_n(x)$. Note that l_n is a function that "oscillates" through zero several times:

Thus, $\mathcal{P}_n^{\star}(x)$ looks like

What we observe is that a local change in y-values caused a global (and drastic) change in $\mathcal{P}_n(x)$. Perhaps the "real" function f would have exhibited a more graceful and localized change, e.g.:

We will use the following theorem to compare the "real" function f being sampled, and the reconstructed interpolant $\mathcal{P}_n(x)$.

Theorem 1. Let

- $x_0 < x_1 < \ldots < x_{n-1} < x_n$
- $y_n = f(x_n), k = 0, 1, ..., n$, where f is a function which is n-times differentiable with continuous derivatives
- $\mathcal{P}_n(x)$ is a polynomial that interpolates $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$

then for any $x \in (x_0, x_n)$, there exists a $\theta = \theta(x) \in (x_0, x_n)$ such that

$$f(x) - \mathcal{P}_n(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x - x_0)(x - x_1) \dots (x - x_n)$$

This theorem may be difficult to apply directly since:

- θ is not known
- \bullet θ changes with x
- The (n+1)-th derivative $f^{(n+1)}(x)$ may not be fully known.

However, we can use it to derive a conservative bound:

Theorem 2. If $M = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|$ and $h = \max_{0 \le i \le n} |x_{i+1} - x_i|$, then

$$|f(x) - \mathcal{P}_n(x)| \le \frac{Mh^{n+1}}{4(n+1)}$$

for all $x \in [x_0, x_n]$.

How good is this, especially when we keep adding more and more data points (e.g., $n \to \infty$ and $h \to 0$), really depends on the higher order derivatives of f(x). For example, $f(x) = \sin(x)$, $x \in [0, 2\pi]$, all derivatives of f are $\pm \sin(x)$ or $\pm \cos(x)$. Thus, $|f^{(k)}(x)| \le 1$ for any k. In this case, M = 1, and as we add more (and denser) data points, we have

$$|f(x) - \mathcal{P}_n(x)| \le \frac{Mh^{n+1}}{4(n+1)} \xrightarrow[h \to 0]{n \to \infty} 0$$

For some functions, however, the values of $|f^{(k)}(x)|$ grow vastly as $k \to \infty$ (i.e., when we introduce additional points). For example,

$$f(x) = \frac{1}{x}, \quad x \in (0.5, 1) \Rightarrow |f^{(n)}(x)| = n! \frac{1}{x^{n+1}}, M = \max_{x \in (0.5, 1)} |f^{(n)}(x)| = n! 2^{n+1}$$

In this case, as $n \to \infty$:

$$\frac{Mh^n}{4n} = \frac{n!2^{n+1}h^n}{4n} \xrightarrow{n \to \infty} \infty$$

Another commonly cited example is Runge's function:

Approximation with a degree-5 polynomial:

Approximation with a degree-10 polynomial:

Thus, in this case, the polynomial $\mathcal{P}_k(x)$ do not uniformly converge to f(x) as we add more points.

A possible improvement stems from the following idea:

$$f(x) - \mathcal{P}_n(x) = \underbrace{\frac{f^{(n+1)}(\theta)}{(n+1)!}}_{\text{this can be arbitrary}} \underbrace{(x - x_0) \dots (x - x_n)}_{\text{select points to minimize this product}}$$

The value of the product $(x-x_0) \dots (x-x_n)$ is minimized by selecting the x_i 's as the *Chebyshev points*. If the interpolation interval is [a,b], the Chebyshev points are given by:

$$x_i = \frac{a+b}{2} + \frac{a-b}{2} \cos\left(\frac{i\pi}{n}\right), \quad i = 0, 1, 2, \dots, n$$

Graphically, these points are the projections on the x-axis of the n+1 points located along the half circle with diameter the interval [a, b] at equal arc-lengths:

Now, we can re-try Runge's function using Chebyshev points:

In fact, it is possible to show that using Chebyshev points, we can guarantee that

$$|f(x) - \mathcal{P}_n(x)| \xrightarrow{n \to \infty} 0$$

provided that over [a, b] both f(x) and its derivative f'(x) remain bounded (the benefit is that this condition does not place restrictions on higher-order derivatives of f(x)).