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We saw three methods for polynomial interpolation (Vandermonde, La-
grange, Newton). It is important to understand that all three methods com-
pute (in theory) the same exact interpolant Pp(z), just following different paths
which may be better or worse from a computational perspective. The question
however remains:

e How accurate is this interpolation, or in other words,
e How close is P, (z) to the “real” function f(z)?

Example:

(z0,90) = (0,0)
($17y1) = (171)

(@nsyn) = (n,7)




Using Lagrange polynomials P, (x) (= x) is written as

Let us “shift” y, by a small amount §. The new value is y; = y, + 6. The
updated interpolant P} (z) then becomes:

n—1
Ph(z) = Z Yili(w) + ypln(z)
=0
Thus, Pr(x) — Pn(x) = 6 - In(z). Note that I, is a function that “oscillates”
through zero several times:
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Thus, P} (z) looks like
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What we observe is that a local change in y-values caused a global (and
drastic) change in P, (z). Perhaps the “real” function f would have exhibited
a more graceful and localized change, e.g.:
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We will use the following theorem to compare the “real” function f being
sampled, and the reconstructed interpolant P, (z).

Theorem 1. Let
0 o<1 <...<Tp-1<xTp

oy, = f(xn), k=0,1,...,n, where f is a function which is n-times differ-
entiable with continuous derivatives

o P,(x) is a polynomial that interpolates (zo,yo), (T1,y1) -, (ZTn, Yn)
then for any © € (xg,x,,), there exists a 6 = 6(x) € (xo,xy) such that

(nt1)
) = Pate) = 0

This theorem may be difficult to apply directly since:

(x—z0)(x—x1) ... (T — )

e 0 is not known

e 0 changes with =

e The (n + 1)-th derivative f(**1)(z) may not be fully known.
However, we can use it to derive a conservative bound:

Theorem 2. If M = maX,¢[zg,a,] FOU(@)| and h = maxo<i<p |Tig1 — T4,

then

MAmH!

|f(z) = Pp(x)] < it D)

for all x € [xg, x,).

How good is this, especially when we keep adding more and more data
points (e.g., n — oo and h — 0), really depends on the higher order derivatives
of f(z). For example, f(z) = sin(z), « € [0, 27], alll derivatives of f are + sin(z)
or £cos(z). Thus, |[f*)(x)] <1 for any k. In this case, M = 1, and as we add
more (and denser) data points, we have
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For some functions, however, the values of |f(*)(z)| grow vastly as k — oo (i.e.,
when we introduce additional points). For example,
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In this case, as n — oo:

Mh™  pl2Hipn

4n 4n

Another commonly cited example is Runge’s function:
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Approximation with a degree-5 polynomial:
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Approximation with a degree-10 polynomial:
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Thus, in this case, the polynomial Pk (x) do not uniformly converge to f(x)
as we add more points.
A possible improvement stems from the following idea:

f(n+1)(9)

(x —x0)...(x —xy)

select points to minimize this product
this can be arbitrary P P

The value of the product (x — zg) ... (x — x,) is minimized by selecting the x;’s
as the Chebyshev points. If the interpolation interval is [a,b], the Chebyshev
points are given by:
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Graphically, these points are the projections on the z-axis of the n 4+ 1 points
located along the half circle with diameter the interval [a, ] at equal arc-lengths:
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Now, we can re-try Runge’s function using Chebyshev points:
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In fact, it is possible to show that using Chebyshev points, we can guarantee
that
|f(x) = Pu(z)] =50

provided that over [a,b] both f(x) and its derivative f’(z) remain bounded
(the benefit is that this condition does not place restrictions on higher-order
derivatives of f(x)).



