
CS412: Lecture #14

Mridul Aanjaneya

March 5, 2015

Cubic Hermite Splines

Let us assume a number of x-locations x1 < x2 < . . . < xn and let us make the
hypothesis that we know both f and f ′ at every location xi. We denote these
values by yi = f(xi) and y′i = f ′(xi), for i = 1, 2, . . . , n. As with other methods
based on piecewise polynomials, we construct the interpolant as

s(x) =


s1(x), x ∈ I1
s2(x), x ∈ I2

...
sn−1(x), x ∈ In−1

where Ik = [xk, xk+1]. In this case, each individual sk(x) is constructed to
match both the function values yk, yk+1 as well as the derivatives y′k, y

′
k+1 at

the endpoints of Ik. In detail:

sk(xk) = yk, sk(xk+1) = yk+1, s′k(xk) = y′k, s′k(xk+1) = y′k+1 (1)

Since sk(x) = a
(k)
3 x3 + a

(k)
2 x2 + a

(k)
1 x + a

(k)
0 has four unknown coefficients,

equation (1) can uniquely define the appropriate values of a
(k)
3 , a

(k)
2 , a

(k)
1 , a

(k)
0 .

Note that equation (1) guarantees that s(x) is continuous with continuous
derivatives (e.g., a C1 function). However, we do not strictly enforce that the
2nd derivative should be continuous, and in fact it generally will not be.

The most straightforward method for determining the coefficients of sk(x) =

a
(k)
3 x3 +a

(k)
2 x2 +a

(k)
1 x+a

(k)
0 mimics the Vandermonde approach for polynomial

interpolation:

sk(xk) = yk ⇒ a
(k)
3 x3

k + a
(k)
2 x2

k + a
(k)
1 xk + a

(k)
0 = yk

sk(xk+1) = yk+1 ⇒ a
(k)
3 x3

k+1 + a
(k)
2 x2

k+1 + a
(k)
1 xk+1 + a

(k)
0 = yk+1

s′k(xk) = y′k ⇒ 3a
(k)
3 x2

k + 2a
(k)
2 xk + a

(k)
1 = y′k

s′k(xk+1) = y′k+1 ⇒ 3a
(k)
3 x2

k+1 + 2a
(k)
2 xk+1 + a

(k)
1 = y′k+1

1



⇒


x3
k x2

k xk 1
x3
k+1 x2

k+1 xk+1 1
3x2

k 2xk 1 0
3x2

k+1 2xk+1 1 0




a
(k)
3

a
(k)
2

a
(k)
1

a
(k)
0

 =


yk

yk+1

y′k
y′k+1


The second method attempts to mimic the Lagrange interpolation approach,
where we wrote

Pn−1(x) = y0l0(x) + y1l1(x) + . . . + ynln(x)

where

li(xj) =

{
1 if i = j
0 if i 6= j

What if we could do something similar here? Can we write

sk(x) = ykq00(x) + yk+1q01(x) + y′kq10(x) + y′k+1q11(x)

Yes, if we have: Note that all qij ’s are cubic polynomials.

q00(xk) = 1 q10(xk) = 0 q01(xk) = 0 q11(xk) = 0
q00(xk+1) = 0 q10(xk+1) = 0 q01(xk+1) = 1 q11(xk+1) = 0
q′00(xk) = 0 q′10(xk) = 1 q′01(xk) = 0 q′11(xk) = 0

q′00(xk+1) = 0 q′10(xk+1) = 0 q′01(xk+1) = 0 q′11(xk+1) = 1

In the special case where xk = 0, xk+1 = 1, these functions are symbolized
with hij(x) and called the canonical Hermite basis functions. Thus, in that case,

sk(x) = ykh00(x) + yk+1h01(x) + y′kh10(x) + y′k+1h11(x)

In this case, we can either solve a 4×4 system for the coefficients of each hij(x),
or construct it using simple algebraic arguments, e.g.,

h11(0) = h′11(0) = 0 ⇒ x2 is a factor of h11(x)

h11(1) = 0 ⇒ x− 1 is a factor of h11(x)

i.e., h11(x) = Cx2(x − 1) = C(x3 − x2) ⇒ h′11(x) = C(3x2 − 2x). Given that
h′11(1) = 1 = C(3− 2) = C ⇒ h11(x) = x3−x2. The four basis polynomials are
similarly derived to be:

h00(x) = 2x3 − 3x2 + 1

h10(x) = x3 − 2x2 + x

h01(x) = −2x3 + 3x2

h11(x) = x3 − x2

2



In the more general case where Ik = [xk, xk+1] (instead of [0, 1]), we can obtain
the basis polynomials using a change of variable t = (x − xk)/(xk+1 − xk) as
follows:

sk(x) = yk h00(t)︸ ︷︷ ︸
q00(x)

+yk+1 h01(t)︸ ︷︷ ︸
q01(x)

+y′k (xk+1 − xk)h10(t)︸ ︷︷ ︸
q10(x)

+y′k+1 (xk+1 − xk)h11(t)︸ ︷︷ ︸
q11(x)

The last, and quite common, approach for generating the Hermite spline is using
tools similar to Newton interpolation. Remember, when interpolating through
(x0, y0), (x1, y1), (x2, y2), (x3, y3), we obtain

P3(x) = f [x0] · 1 + f [x0, x1] · (x− x0) + f [x0, x1, x2] · (x− x0)(x− x1)

+ f [x0, x1, x2, x3] · (x− x0)(x− x1)(x− x2)

The idea is as follows: perform Newton interpolation through the points (x?
k, y

?
k),

(xk, yk), (xk+1, yk+1), (x?
k+1, y

?
k+1), where x?

k = xk − ε, x?
k+1 = xk+1 + ε.

We will compute this interpolant using the Newton method, and ultimately
set ε → 0 such that x?

k converges onto xk, and x?
k+1 converges onto xk+1,

respectively. Thus,

sk(x) = f [x?
k] + f [x?

k, xk](x− x?
k) + f [x?

k, xk, xk+1](x− x?
k)(x− xk)

+ f [x?
k, xk, xk+1, x

?
k+1](x− x?

k)(x− xk)(x− xk+1)

Taking the limit as ε→ 0

sk(x) =

(
lim

x?
k→xk

f [x?
k]

)
+

(
lim

x?
k→xk

f [x?
k, xk]

)
(x− xk)

+

(
lim

x?
k→xk

f [x?
k, xk, xk+1]

)
(x− xk)2

+

 lim
x?
k → xk

x?
k+1 → xk+1

f [x?
k, xk, xk+1, x

?
k+1]

 (x− xk)2(x− xk+1)

We use the shorthand notation f [xk, xk] = limx?
k→xk

f [x?
k, xk] and construct the

finite difference table as usual.

x?
k f [x?

k]
xk f [xk] f [x?

k, xk]
xk+1 f [xk+1] f [xk, xk+1] f [x?

k, xk, xk+1]
x?
k+1 f [x?

k+1] f [xk+1, x
?
k+1] f [xk, xk+1, x

?
k+1] f [x?

k, xk, xk+1, x
?
k+1]

3



When ε → 0, the quantities in this table that involve x?
k or x?

k+1 may need
to be expressed through limits, e.g.,

x?
k → xk, x?

k+1 → xk+1, f [x?
k] = y?k → yk, f [x?

k+1] = y?k+1 → yk+1

f [x?
k, xk] =

f [xk]− f [x?
k]

xk − x?
k

x?
k→xk−−−−→ f ′(xk) = y′k

f [xk+1, x
?
k+1] =

f [x?
k+1]− f [xk+1]

x?
k+1 − xk+1

x?
k+1→xk+1−−−−−−−−→ f ′(xk+1) = y′k+1

Thus, the table gets filled as follows:

xk yk
xk yk y′k

xk+1 yk+1 f [xk, xk+1] f [x?
k, xk, xk+1]

xk+1 yk+1 y′k+1 f [xk, xk+1, x
?
k+1] f [x?

k, xk, xk+1, x
?
k+1]

The remaining divided differences are computed normally using the recursive
definition. Often times, we skip the “stars” on xk’s and use the simpler notation
f [xk, xk], f [xk, xk, xk+1, xk+1], etc.

4


