CS412: Lecture #16

Mridul Aanjaneya

March 17, 2015

Useful properties of matrix and vector norms

We previously saw that

$$||Ax|| \le ||A|| \cdot ||x|| \tag{1}$$

for any matrix A, and any vector x (of dimensions $m \times m$ and $m \times 1$, respectively). Note that, when writing an expression such as (1), the matrix norm ||A|| is understood to be the inferred norm from the vector norm used in ||Ax|| and ||x||. Thus,

$$||Ax||_1 \le ||A||_1 \cdot ||x||_1$$

and

$$||Ax||_{\infty} \le ||A||_{\infty} \cdot ||x||_{\infty}$$

are both valid, but we cannot mix and match, e.g.:

$$||Ax||_{\infty} \le ||A||_2 \cdot ||x||_1$$

When solving a linear system Ax = b, computer algorithms are only providing an approximation $(x_{\sf approx})$ to the exact solution $(x_{\sf exact})$. This is due to factors such as finite precision, roundoff errors or even imperfect solution algorithms. In either case, we have an *error* (error vector, in fact) defined as

$$e = x_{\mathsf{approx}} - x_{\mathsf{exact}}$$

Naturally, we would like to have an understanding of the *magnitude* of this error (e.g., some appropriate norm ||e||). The problem is that we do not know the exact, pristine solution x_{exact} !

One remedy is offered via the residual vector defined as:

$$r = b - Ax_{approx}$$

The vector r is something we can compute practically since it involves only known quantities (b, A, x_{approx}) . Furthermore, we have:

$$\begin{array}{rcl} r & = & b - Ax_{\mathsf{approx}} \\ & = & Ax_{\mathsf{exact}} - Ax_{\mathsf{approx}} \\ & = & -A(x_{\mathsf{approx}} - x_{\mathsf{exact}}) \\ & = & -Ae \\ \Rightarrow r & = & -Ae \\ \Rightarrow e & = & -A^{-1}r \end{array}$$

The last equation links the error with the residual. Furthermore, we can write

$$||e|| = ||A^{-1}r|| \leq ||A^{-1}|| \cdot ||r||$$

This equation provides a *bound* for the error, as a function of $||A^{-1}||$ and the norm of the computable vector r! Note that:

- We can obtain this estimate without knowing the exact solution, but
- We need $||A^{-1}||$ and generally, computing $||A^{-1}||$ is just as difficult (if not more) than finding x_{exact} . However, there are special cases where an estimate of $||A^{-1}||$ can be obtained.

A different source of error

Sometimes, the right hand side (b) of Ax = b has errors that make it deviate from its intended value. For example, in the Vandermonde matrix method for polynomial interpolation, b contains the samples $(y_1 = f(x_1), y_2, \ldots, y_n)$ where $y_i = f(x_i)$. An error in a measuring device supposed to sample f(x) could lead to erroneous readings y_i^* instead of y_i . In general, measuring inaccuracies can lead to the right hand side vector b being misrepresented as b^* $(\neq b)$.

In this case, instead of the intended solution $x = A^{-1}b$, we in fact compute $x^* = A^{-1}b^*$. How important is the error $e = x^* - x$ that is caused by this misrepresentation of b?

Let us introduce some notation. Let $\delta b = b^* - b$, $\delta x = x^* - x$, Ax = b, $Ax^* = b^*$. Then

$$A(x^* - x) = b^* - b$$
$$A\delta x = \delta b$$
$$\delta x = A^{-1}\delta b$$

Taking norms,

$$||\delta x|| = ||A^{-1}\delta b|| \le ||A^{-1}|| \cdot ||\delta b||$$
 (2)

Thus, the error in the computed solution δx is proportional to the error in b.

An even more relevant question is: How does the *relative* error $||\delta x||/||x|| = ||x^* - x||/||x||$ compare to the relative error in b ($||\delta b||/||b||$)? This may be more useful to know, since $||\delta b||$ may be impossible to compute (if we don't know the real b!). For this, we write

$$Ax = b \quad \Rightarrow \quad ||b|| = ||Ax|| \le ||A|| \cdot ||x||$$

$$\Rightarrow \quad \frac{1}{||x||} \le ||A|| \cdot \frac{1}{||b||}$$

$$(3)$$

Multiplying equations (2) and (3) gives

$$\frac{||\delta x||}{||x||} \le ||A|| \cdot ||A^{-1}|| \cdot \frac{||\delta b||}{||b||}$$

Thus, the relative error in x is bounded by a multiple of the relative error in b! The multiplicative constant $\kappa(A) = ||A|| \cdot ||A^{-1}||$ is called the *condition number* of A, and is an important measure of the sensitivity of a linear system Ax = b to being solved on a computer, in the presence of inaccurate values. For e.g., if the relative error $||\delta b||/||b||$ is .0001%, but $\kappa(A) = 100.000$ (could happen!), then we could have up to a 10% error in the computed x!

Why is this always relevant?

Simply, almost $any\ b$ will have some small relative error due to the fact that it is represented on a computer up to machine precision! The relative error will be at least as much as the machine epsilon due to roundoff!

$$\frac{||\delta b||_{\infty}}{||b||} \ge \varepsilon \approx 10^{-7} \quad \text{(in single precision)}$$

But how bad can the condition number get? Very bad at times. For example, Hilbert matrices $H_n \in \mathbb{R}^{n \times n}$ are defined as

$$(H_n)_{ij} = \frac{1}{i+j-1}$$

Considering a specific instance for n = 5,

$$H_5 = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 & 1/5 \\ 1/2 & 1/3 & 1/4 & 1/5 & 1/6 \\ 1/3 & 1/4 & 1/5 & 1/6 & 1/7 \\ 1/4 & 1/5 & 1/6 & 1/7 & 1/8 \\ 1/5 & 1/6 & 1/7 & 1/8 & 1/9 \end{bmatrix}, \qquad \kappa_{\infty}(H_5) = ||H_5||_{\infty} \cdot ||H_5^{-1}||_{\infty} \approx 10^6$$

Thus, any attempt at solving $H_5x = b$ would be subject to a relative error up to 10% just due to roundoff errors in b!

Another case: near-singular matrices

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 6 + \varepsilon \end{array} \right]$$

As $\varepsilon \to 0$, A becomes singular (non-invertible). In this case, $\kappa(A) \to \infty$.

What is the best case for $\kappa(A)$?

Lemma 1. For any vector-induced matrix norm, we have ||I|| = 1.

Proof. From the definition,

$$||I|| = \max_{x \neq 0} \frac{||Ix||}{||x||} = \max_{x \neq 0} \frac{||x||}{||x||}$$

Using property (iv) of matrix norms gives

$$I = A \cdot A^{-1} \Rightarrow 1 = ||I|| = ||A \cdot A^{-1}|| \le ||A|| \cdot ||A^{-1}||$$

Thus, $\kappa(A) \geq 1$. The "best" conditioned matrices are of the form $A = c \cdot I$, and have $\kappa(A) = 1$.

Solving linear systems of equations

Our general strategy for solving a system Ax = b will be to transform it to an equivalent, but easier to solve problem (or problems). An example of an easier sub-problem is a triangular system Ux = b, where

$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & O & \ddots & \vdots \\ 0 & \dots & 0 & u_{nn} \end{bmatrix}$$

is an upper triangular matrix. Here is an example, illustrating how such systems are easy to solve:

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & -4 & -6 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \\ 1 \end{bmatrix}$$

From the 3rd row, solve $x_3 = -1$ and replace x_3 in the previous (2nd) equation:

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -12 \\ -1 \end{bmatrix}$$

From the 2nd row, solve $x_2 = 3$ and replace x_2 in the previous (1st) equation:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$$

We can write this procedure formally in pseudo-code:

Algorithm 1 Back substitution for upper triangular system

```
1: for j = n ... 1 do
2: if u_{jj} = 0 then
3: return. \triangleright matrix is singular
4: end if
5: x_j \leftarrow b_j/u_{jj}
6: for i = 1 ... j - 1 do
7: b_i \leftarrow b_i - u_{ij}x_j
8: end for
9: end for
```

By counting how many times the loops are executed, we see that n divisions are required, and $\sum_{j=1}^{n} (j-1) = O(n^2)$ multiplications and subtractions. Overall, the cost of back substitution is $O(n^2)$.