
CS412: Lecture #16

Mridul Aanjaneya

March 17, 2015

Useful properties of matrix and vector norms

We previously saw that

||Ax|| ≤ ||A|| · ||x|| (1)

for any matrix A, and any vector x (of dimensionsm×m andm×1, respectively).
Note that, when writing an expression such as (1), the matrix norm ||A||

is understood to be the inferred norm from the vector norm used in ||Ax|| and
||x||. Thus,

||Ax||1 ≤ ||A||1 · ||x||1

and

||Ax||∞ ≤ ||A||∞ · ||x||∞

are both valid, but we cannot mix and match, e.g.:

((((((((((
||Ax||∞ ≤ ||A||2 · ||x||1

When solving a linear system Ax = b, computer algorithms are only providing
an approximation (xapprox) to the exact solution (xexact). This is due to factors
such as finite precision, roundoff errors or even imperfect solution algorithms.
In either case, we have an error (error vector, in fact) defined as

e = xapprox − xexact

Naturally, we would like to have an understanding of the magnitude of this error
(e.g., some appropriate norm ||e||). The problem is that we do not know the
exact, pristine solution xexact!

One remedy is offered via the residual vector defined as:

r = b−Axapprox

1

The vector r is something we can compute practically since it involves only
known quantities (b, A, xapprox). Furthermore, we have:

r = b−Axapprox
= Axexact −Axapprox
= −A(xapprox − xexact)
= −Ae

⇒ r = −Ae
⇒ e = −A−1r

The last equation links the error with the residual. Furthermore, we can write

||e|| = ||A−1r|| ≤ ||A−1|| · ||r||

This equation provides a bound for the error, as a function of ||A−1|| and the
norm of the computable vector r! Note that:

• We can obtain this estimate without knowing the exact solution, but

• We need ||A−1|| and generally, computing ||A−1|| is just as difficult (if
not more) than finding xexact. However, there are special cases where an
estimate of ||A−1|| can be obtained.

A different source of error

Sometimes, the right hand side (b) of Ax = b has errors that make it deviate
from its intended value. For example, in the Vandermonde matrix method for
polynomial interpolation, b contains the samples (y1 = f(x1), y2, . . . , yn) where
yi = f(xi). An error in a measuring device supposed to sample f(x) could lead
to erroneous readings y?i instead of yi. In general, measuring inaccuracies can
lead to the right hand side vector b being misrepresented as b? (6= b).

In this case, instead of the intended solution x = A−1b, we in fact compute
x? = A−1b?. How important is the error e = x? − x that is caused by this
misrepresentation of b?

Let us introduce some notation. Let δb = b? − b, δx = x? − x, Ax = b,
Ax? = b?. Then

A(x? − x) = b? − b
Aδx = δb

δx = A−1δb

Taking norms,

||δx|| = ||A−1δb|| ≤ ||A−1|| · ||δb|| (2)

Thus, the error in the computed solution δx is proportional to the error in b.

2

An even more relevant question is: How does the relative error ||δx||/||x|| =
||x?−x||/||x|| compare to the relative error in b (||δb||/||b||)? This may be more
useful to know, since ||δb|| may be impossible to compute (if we don’t know the
real b!). For this, we write

Ax = b ⇒ ||b|| = ||Ax|| ≤ ||A|| · ||x||

⇒ 1

||x||
≤ ||A|| · 1

||b||
(3)

Multiplying equations (2) and (3) gives

||δx||
||x||

≤ ||A|| · ||A−1|| · ||δb||
||b||

Thus, the relative error in x is bounded by a multiple of the relative error in b!
The multiplicative constant κ(A) = ||A|| · ||A−1|| is called the condition number
of A, and is an important measure of the sensitivity of a linear system Ax = b
to being solved on a computer, in the presence of inaccurate values. For e.g.,
if the relative error ||δb||/||b|| is .0001%, but κ(A) = 100.000 (could happen!),
then we could have up to a 10% error in the computed x!

Why is this always relevant?

Simply, almost any b will have some small relative error due to the fact that it
is represented on a computer up to machine precision! The relative error will
be at least as much as the machine epsilon due to roundoff!

||δb||∞
||b||

≥ ε ≈ 10−7 (in single precision)

But how bad can the condition number get? Very bad at times. For example,
Hilbert matrices Hn ∈ Rn×n are defined as

(Hn)ij =
1

i+ j − 1

Considering a specific instance for n = 5,

H5 =


1 1/2 1/3 1/4 1/5

1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9

 , κ∞(H5) = ||H5||∞ · ||H−15 ||∞ ≈ 106

Thus, any attempt at solving H5x = b would be subject to a relative error up
to 10% just due to roundoff errors in b!

Another case: near-singular matrices

A =

[
1 2
3 6 + ε

]
As ε→ 0, A becomes singular (non-invertible). In this case, κ(A)→∞.

3

What is the best case for κ(A)?

Lemma 1. For any vector-induced matrix norm, we have ||I|| = 1.

Proof. From the definition,

||I|| = max
x 6=0

||Ix||
||x||

= max
x 6=0

||x||
||x||

Using property (iv) of matrix norms gives

I = A ·A−1 ⇒ 1 = ||I|| = ||A ·A−1|| ≤ ||A|| · ||A−1||

Thus, κ(A) ≥ 1 . The “best” conditioned matrices are of the form A = c · I,

and have κ(A) = 1.

Solving linear systems of equations

Our general strategy for solving a system Ax = b will be to transform it to an
equivalent, but easier to solve problem (or problems). An example of an easier
sub-problem is a triangular system Ux = b, where

U =


u11 u12 . . . u1n
0 u22 . . . u2n
... O

. . .
...

0 . . . 0 unn


is an upper triangular matrix. Here is an example, illustrating how such systems
are easy to solve:

 1 2 2
0 −4 −6
0 0 −1

 x1
x2
x3

 =

 3
−6
1


From the 3rd row, solve x3 = −1 and replace x3 in the previous (2nd) equation:

 1 2 0
0 −4 0
0 0 1

 x1
x2
x3

 =

 5
−12
−1


From the 2nd row, solve x2 = 3 and replace x2 in the previous (1st) equation:

 1 0 0
0 1 0
0 0 1

 x1
x2
x3

 =

 −1
−3
−1



4

We can write this procedure formally in pseudo-code:

Algorithm 1 Back substitution for upper triangular system

1: for j = n . . . 1 do
2: if ujj = 0 then
3: return. . matrix is singular
4: end if
5: xj ← bj/ujj
6: for i = 1 . . . j − 1 do
7: bi ← bi − uijxj
8: end for
9: end for

By counting how many times the loops are executed, we see that n divi-
sions are required, and

∑n
j=1(j − 1) = O(n2) multiplications and subtractions.

Overall, the cost of back substitution is O(n2).

5

